

.

.

CMI
125 West Park Loop
Huntsville, AL 36806
Phone 256.722.0175
Fax 256.722.0144

Chandler/May, Inc.

VxWorks Device Driver
User’s Manual

VxWorks Device Driver Software for the
General Standards PMC-FLASH2
hosted on PowerPC and 80x86 Processors

Document number: 9005007 Revision: 1.0 Date: 10/20//99

Engineering Approval:

 Date:

Quality Representative
Approval:

 Date:

 PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 1

Acknowledgments
Copyright 1999, Chandler/May, Inc. (CMI)

ALL RIGHTS RESERVED. The Purchaser of the GSC PMC-FLASH2 device driver may use or modify in
source form the subject software, but not to re-market it or distribute it to outside agencies or separate
internal company divisions. The software, however, may be embedded in their own distributed software.
In the event the Purchaser's customers require GSC PMC-FLASH2 device driver source code, then they
would have to purchase their own copy of the GSC PMC-FLASH2 device driver. CMI makes no warranty,
either expressed or implied, including, but not limited to, any implied warranties of merchantability or fitness
for a particular purpose regarding this software and makes such software available solely on an "as-is"
basis. CMI reserves the right to make changes in the GSC PMC-FLASH2 device driver design without
reservation and without notification to its users. This document may be copied for the Purchaser's own
internal use but not to re-market it or distribute it to outside agencies or separate internal company
divisions. If this document is to be copied, all copies must be of the entire document and all copyright and
trademark notifications must remain intact. The material in this document is for information only and is
subject to change without notice. While reasonable efforts have been made in the preparation of this
document to assure its accuracy, CMI assumes no liability resulting from errors or omissions in this
document, or from the use of the information contained herein.

CMI, Chandler/May, Inc. logo are trademarks of CMI.

Force is a registered trademark of Force Computers. Inc.

GSC and PMC-FLASH2 are trademarks of General Standards Corporation

Motorola and the Motorola symbol are registered trademark of Motorola, Inc.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

PowerPC is a trademark of IBM Corporation.

VxWorks and Wind River Systems are registered trademarks of Wind River Systems, Inc.

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 2

1 DRIVER OVERVIEW...3

2 REFERENCED DOCUMENTS..3

3 MAKING THE DEVICE DRIVER ...4

4 VIRTUAL-TO-PHYSICAL MEMORY MAPPING..4

5 DRIVER INTERFACE..7

5.1 FLASH2DRVINSTALL().. 9
5.2 FLASH2DRVREMOVE().. 11
5.3 OPEN()... 12
5.4 CLOSE() ... 13
5.5 READ()... 14
5.6 WRITE() .. 15
5.7 IOCTL() ... 16

5.7.1 NO_COMMAND..17
5.7.2 READ_REGISTER ...18
5.7.3 WRITE_REGISTER..23
5.7.4 GET_DEVICE_ERROR...28
5.7.5 GET_BASE_ADDRESS...30

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 3

1 Driver Overview

The purpose of this document is to describe how to interface with the PMC-FLASH2
VxWorks Device Driver developed by Chandler/May, Incorporated (CMI). This software
provides the interface between "Application Software" and the FLASH2 Board. The interface
to this board is at the I/O system level. It requires no knowledge of the actual board addressing
of the PLX PCI bus master interface.

The FLASH2 Driver Software executes under control of the VxWorks operating system. The
FLASH2 is implemented as a standard VxWorks device driver written in the ‘C’ programming
language. The FLASH2 Driver Software is designed to operate on CPU boards containing
MPC603, MPC604, and MPC750 processors as well as VME and CompactPCI CPU
boards containing 80x86 processors with the same bus interface hardware as PowerPC
boards. For example, the Force PPC/PowerCore-6604 CPU board, the Motorola
MVME1600, MVME2300, MVME2400, MVME2600, and MVME2700 series boards,
and the SCI JTT 686 CPU board.

The General Standards Corporation (GSC) FLASH2 board is a static RAM and FLASH
memory device that fits into a PCI Mezzanine Card slot. The primary usage for this
SRAM/FLASH memory card is for non-volatile storage. The FLASH2 board can be
delivered in several different configurations. Some boards may have SRAM only. Other boards
may have 512Kbytes of SRAM and up to 127.5Mbytes of FLASH memory. Currently, this
driver only supports the SRAM portion of FLASH2 boards.

2 Referenced Documents

The following documents provided reference material used in the development of this design:

• PMC-FLASH2 User’s Manual – Revision A, General Standards Corporation.

• PLX Technology, Inc. PCI 9080 PCI Bus Master Interface Chip data sheet.

• Motorola MVME1603/1604 Single Board Computer Programmer’s Reference Guide.

• Motorola MVME2300-Series VME Processor Module Programmer’s Reference
Guide.

• Motorola MVME2600/2700 Single Board Computer Programmer’s Reference Guide.

• Force PPC/PowerCore-6603/4 Technical Reference Manual.

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 4

3 Making the Device Driver

In order to use the FLASH2 Device Driver for a particular target CPU platform, the driver
object files must be built by “making” or compiling the software modules. The object modules
are those that are loaded by the VxWorks target processor and contain functions which can
then be executed. The Wind River Tornado environment makes this process easy with one
simple command: make. make uses a file, called a makefile, which tells the development
system which source modules are to be compiled, the parameters and options to use when
compiling, and any other miscellaneous file operations a user may need to build a particular
system of object modules.

The makefile included contains several Board Support Package dependent switches that must
be defined correctly for successful compilation and use. The user is only required to set the
BSP variable in the makefile. The user is also required to modify the #define
GS_FLASH2_SRAM_SIZE located in the file flash2_drv.h. This definition indicates to the
driver the size of the SRAM in bytes on the FLASH2 card. Once BSP and
GS_FLASH2_SRAM_SIZE are set correctly, the user can then begin compiling by
executing make.

The module in the make file should begin compiling and the display should reflect a successful
compilation of the module.

The output file from the build procedure should be:

flash2_drv.o Relocatable/loadable module for the device driver.

4 Virtual-to-Physical Memory Mapping

If your BSP does not already have the PCI memory space addresses required by the PMC-
FLASH2 card mapped by the PHYS_MEM_DESC structure then it will be necessary for the
user to add this region of memory required into sysPhysMemDesc and then rebuild the
kernel. This is done by editing sysLib.c and adding the following lines of code to the
sysPhysMemDesc table.

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 5

/* GS PMC-FLASH2 SRAM – PMC Site 1 */
 {
 (void *) GS_FLASH2_PMC_1_LOCAL_ADRS,
 (void *) GS_FLASH2_PMC_1_LOCAL_ADRS,
 GS_FLASH2_SRAM_SIZE,
 VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |
 VM_STATE_MASK_CACHEABLE,
 VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE
 },

 /* This map is only needed on CPU boards
 * with 2 PMC sites
 */

/* GS PMC-FLASH2 SRAM – PMC Site 2 */
 {
 (void *) GS_FLASH2_PMC_2_LOCAL_ADRS,
 (void *) GS_FLASH2_PMC_2_LOCAL_ADRS,
 GS_FLASH2_SRAM_SIZE,
 VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |
 VM_STATE_MASK_CACHEABLE,
 VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE
 },

where GS_FLASH2_PMC_1_LOCAL_ADRS is defined to be

CPU_PCI_ISA_MEM_ADRS + GS_FLASH2_PMC1_PCI_ADRS,

and where GS_FLASH2_PMC_2_LOCAL_ADRS is defined to be

CPU_PCI_ISA_MEM_ADRS + GS_FLASH2_PMC2_PCI_ADRS.

GS_FLASH2_PMC1_PCI_ADRS, GS_FLASH2_PMC2_PCI_ADRS and
GS_FLASH2_SRAM_SIZE can be found in the file flash2_drv.h.
GS_FLASH2_PMC1_PCI_ADRS and GS_FLASH2_PMC2_PCI_ADRS are user
selectable offsets into PCI memory space while GS_FLASH2_SRAM_SIZE is based on the
physical size of SRAM on the FLASH2 card. CPU_PCI_ISA_MEM_ADRS, which is the
base address for PCI memory space on the CPU board being used, is BSP dependant. The
following table describes where this #define can be found, the name used, and its value for
several BSP’s.

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 6

BSP File Name #define Value

mv1603 mv1600.h CPU_PCI_ISA_MEM_ADRS 0xc000 0000

mv1604 mv1600.h CPU_PCI_ISA_MEM_ADRS 0xc000 0000

mv2302 mv2600.h CPU_PCI_ISA_MEM_ADRS Pseudo PREP:
 0xc000 0000

Extended VME:
 0xfd00 0000

mv2304 mv2600.h CPU_PCI_ISA_MEM_ADRS Pseudo PREP:
 0xc000 0000

Extended VME:
 0xfd00 0000

mv2400 mv2400.h PCI_MSTR_MEMIO_LOCAL Pseudo PREP:
 0xc000 0000

Extended VME:
 0xfd00 0000

mv2603 mv2600.h CPU_PCI_ISA_MEM_ADRS Pseudo PREP:
 0xc000 0000

Extended VME:
 0xfd00 0000

mv2604 mv2600.h CPU_PCI_ISA_MEM_ADRS Pseudo PREP:
 0xc000 0000

Extended VME:
 0xfd00 0000

mv2700 mv2600.h CPU_PCI_ISA_MEM_ADRS Pseudo PREP:
 0xc000 0000

Extended VME:

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 7

 0xfd00 0000

pcore604 pcore60x.h Not Defined 0xb000 0000

jtt686 pci_vme.h CPU_PCI_ISA_MEM_ADRS Pseudo PREP:
 0xc000 0000

Extended VME:
 0xf103 0000

5 Driver Interface

The FLASH2 Driver conforms to the device driver standards required by the VxWorks
Operating System and contains the following standard driver entry points.

• FLASH2DrvInstall() – Installs the device driver for use with multiple FLASH2 Cards

• FLASH2DrvRemove() – Removes the device driver from use

• open() – opens a driver interface to one FLASH2 Card

• close() – closes a driver interface to one FLASH2 Card

• read() – currently has no functionality for this particular device

• write() – currently has no functionality for this particular device

• ioctl() – performs various control and setup functions on the FLASH2 Card

The FLASH2 Device Driver provides a standard I/O system interface to the GSC PMC-
FLASH2 card for VxWorks applications that run on the VxWorks target processor. The
device driver is installed and devices created through the use of standard VxWorks I/O system
functions. The functions of the driver can then be used to access the board PLX registers. It is
not necessary, however, to go through the VxWorks I/O system to access SRAM. The user
can simply access SRAM directly in memory since the driver installation has made the
FLASH2 board accessible in PCI memory space.

The FLASH2 Device Driver allows for multiple boards on a single PCI bus. Each board will
be addressed as a separate VxWorks I/O system device. This device will be created when the
driver is installed and is then available for all driver operations (open, close, ...).

It is important to note that the FLASH2 device driver is target processor dependent and thus
BSP dependent. System calls are made within the driver which are only available through

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 8

certain board support packages. This is due to the fact that PCI memory and I/O space could
be mapped differently for each target processor board.

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 9

5.1 FLASH2DrvInstall()

The FLASH2DrvInstall () function installs the device driver into the VxWorks operating
system. This function must be called prior to using any of the other driver functions. This
function should not be called again without first calling the FLASH2DrvRemove() function.

Once this installation has been performed successfully the user has access to the FLASH2
device in memory. He does not have to open the device unless he wishes to perform any ioctl()
calls such as accessing PLX registers, reading device error codes, or getting the board
installation address. Keep in mind that the board installation address can be determined from
the driver header files. Refer to the section on virtual-to-physical memory mapping to
determine this address.

The FLASH2DrvInstall () function performs the following operations:

• Installs the device driver into the VxWorks operating system

• Performs the following for each PMC Slot on the processor board

• Determines if this slot contains a PCI card by examining the CPU board’s registers

• Determines if the slot contains a FLASH2 board by examining the PCI
Configuration Device Type and Vendor ID Registers

• Programs the PCI Configuration Base Address and Configuration Address
Registers with predefined addresses

• Enables the FLASH2 Card to respond over the PCI Bus

• Installs a device for the PMC Slot

PROTOTYPE:

extern int FLASH2DrvInstall(BOOL bDebug);

Where:

bDebug - A boolean that is sent to the driver to enable debugging. If enabled the driver will
display error and status messages on the console during driver access. Note, this
should not be enabled during time sensitive processes.

Returns OK on success and ERROR on failure

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 10

EXAMPLE:

STATUS iStatus;

/* Install the FLASH2 VxWorks Device Driver. */
iStatus = FLASH2DrvInstall(TRUE);

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 11

5.2 FLASH2DrvRemove()

The FLASH2DrvRemove() function is used to remove the FLASH2 Device Driver from the
VxWorks operating system. This function should only be called after a call to the
FLASH2DrvInstall() function. The FLASH2DrvRemove() function closes all the open devices
for each PMC slot and removes the device driver from the operating system.

PROTOTYPE:

extern int FLASH2DrvRemove(void);

Returns OK on success and ERROR on failure

EXAMPLE:

STATUS iStatus;

/* Remove the FLASH2 Driver */
iStatus = FLASH2DrvRemove();

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 12

5.3 open()

The open() function is the standard VxWorks entry point to open a connection to a FLASH2
Card in one PMC Slot. This function may only be called after a call to the
FLASH2DrvInstall() function is made.

PROTOTYPE:

extern int open(const char *cName, int iFlags, int iMode)

Where:

cName - name of the device being opened which is one of the following depending on the
slot the FLASH2 Board is in:

• FLASH2_PMC1 - PMC slot 1

• FLASH2_PMC2 - PMC slot 2

iFlags - is not used.

iMode - is not used.

Returns OK on success and ERROR on failure

EXAMPLE:

int FileDesc[2];
LOCAL char *devName[] = {FLASH2_PMC1, FLASH2_PMC2};
int FLASH2Slot = 1;

/* open the FLASH2 device for slot 1 */
FileDesc[FLASH2Slot] = open(devName[FLASH2Slot], O_RDWR, 0644);

if (FileDesc[FLASH2Slot] == ERROR)
{
 logMsg("Cannot Open Device Error %s\n\n",

(int) devName[FLASH2Slot], 0, 0, 0, 0, 0);
}

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 13

5.4 close()

The close() function is the standard VxWorks entry point to close a connection to a FLASH2
Card in one PMC Slot. This function should only be called after the open function has been
successfully called for a slot where an FLASH2 Card resides. The close function closes the
interface to an FLASH2 device.

PROTOTYPE:

extern STATUS close(int iFd);

Where:

iFd - File Descriptor returned from a call to the open function.

Returns OK if successful or ERROR if unsuccessful.

EXAMPLE:

int FileDesc[2];
int FLASH2Slot = 1;

/* close the device on slot 2 */
if (close(FileDesc[FLASH2Slot]) == ERROR)
{
 logMsg("Close Error for Slot #%d\n\n", FLASH2Slot, 0, 0, 0, 0, 0);
}
FileDesc[FLASH2Slot] = ERROR;

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 14

5.5 read()

The read() function is the standard VxWorks entry point to receive data from an opened
device. However, since the FLASH2 card is simply mapped into PCI memory space as a
memory device, the user can access it directly instead of calling this function.

PROTOTYPE:

extern int read(int iFd, char *cBuffer, size_t iMaxbytes);

Where:

iFd - File Descriptor returned from a call to the open function.

CBuffer - pointer to character array to store read bytes.

iMaxbytes - maximum number of bytes to read.

Returns nothing since the driver does not implement this function.

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 15

5.6 write()

The write() function is the standard VxWorks entry point to write data to an opened device.
However, since the FLASH2 card is simply mapped into PCI memory space as a memory
device, the user can access it directly instead of calling this function.

PROTOTYPE:

extern int write(int iFd, char *cBuffer, size_t iNBytes);

Where:

iFd - File Descriptor returned from a call to the open function.

cBuffer - pointer to WRITE_PARAM structure containing an array of channel data and
sample data to write.

iNBytes - total number of bytes to write.

Returns nothing since the driver does not implement this function.

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 16

5.7 ioctl()

The ioctl() function is the standard VxWorks entry point to perform control and setup
operations on an FLASH2 Card in one PMC Slot. This function should only be called after
the open function has been successfully called for a slot where an FLASH2 Card resides. The
ioctl() function will perform different functions based upon the function parameter. These
functions will be described in the following subparagraphs.

PROTOTYPE:

extern int ioctl(int iFd, int iFunction, int iArg);

Where:

iFd - File Descriptor returned from a call to the open function.

iFunction - The ioctl function to perform which is one of the following:

NO_COMMAND - Empty command, performs nothing.

READ_REGISTER - Reads a specified FLASH2 register.

WRITE_REGISTER - Writes to a specified FLASH2 register.

GET_DEVICE_ERROR - Returns the error that occurred during the last access to the
FLASH2 driver.

GET_BASE_ADDRESS – Retrieves the base address of the installed FLASH2 card.

iArg - The parameters to the specific ioctl() function. See the following subsections for a
description of the parameters for each function.

Returns OK if successful or ERROR if unsuccessful.

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 17

5.7.1 NO_COMMAND

This is an empty driver entry point. This command may be given to validate that the driver
is correctly installed and that the FLASH2 board device has been successfully opened.

arg PARAMETER:

Not used.

EXAMPLE:

int FileDesc[2];
int 16IAOSlot = 1;

if (ioctl(FileDesc[FLASH2Slot], NO_COMMAND, 0) == ERROR)
{
 logMsg("ioctl NO_COMMAND Failed for Slot #%d\n\n", FLASH2Slot,

0, 0, 0, 0, 0);
}

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 18

5.7.2 READ_REGISTER

The READ_REGISTER function reads and returns the contents of one of the FLASH2
registers.

arg PARAMETER:

REG_PARAM *

where REG_PARAM is defined to be

typedef struct RegParam
{

int eFLASH2Register;
ULONG *pulValue;

} REG_PARAM;

and,

int eFLASH2Register - One of the following registers to read. Refer to the FLASH2 and
PLX hardware documentation for a description of each register.

*** DMA Registers ***

DMA_CH_0_MODE

DMA_CH_0_PCI_ADDR

DMA_CH_0_LOCAL_ADDR

DMA_CH_0_TRANS_BYTE_CNT

DMA_CH_0_DESC_PTR

DMA_CH_1_MODE

DMA_CH_1_PCI_ADDR

DMA_CH_1_LOCAL_ADDR

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 19

DMA_CH_1_TRANS_BYTE_CNT

DMA_CH_1_DESC_PTR

DMA_CMD_STATUS

DMA_MODE_ARB_REG

DMA_THRESHOLD_REG

*** PCI Configuration Registers ***

DEVICE_VENDOR_ID

STATUS_COMMAND

CLASS_CODE_REVISION_ID

BIST_HDR_TYPE_LAT_CACHE_SIZE

PCI_MEM_BASE_ADDR

PCI_IO_BASE_ADDR

PCI_BASE_ADDR_0

PCI_BASE_ADDR_1

CARDBUS_CIS_PTR

SUBSYS_ID_VENDOR_ID

PCI_BASE_ADDR_LOC_ROM

LAT_GNT_INT_PIN_LINE

*** Local Configuration Registers. ***

PCI_TO_LOC_ADDR_0_RNG

LOC_BASE_ADDR_REMAP_0

MODE_ARBITRATION

BIG_LITTLE_ENDIAN_DESC

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 20

PCI_TO_LOC_ROM_RNG

LOC_BASE_ADDR_REMAP_EXP_ROM

BUS_REG_DESC_0_FOR_PCI_LOC

DIR_MASTER_TO_PCI_RNG

LOC_ADDR_FOR_DIR_MASTER_MEM

LOC_ADDR_FOR_DIR_MASTER_IO

PCI_ADDR_REMAP_DIR_MASTER

PCI_CFG_ADDR_DIR_MASTER_IO

PCI_TO_LOC_ADDR_1_RNG

LOC_BASE_ADDR_REMAP_1

BUS_REG_DESC_1_FOR_PCI_LOC

*** Run Time Registers ***

MAILBOX_REGISTER_0

MAILBOX_REGISTER_1

MAILBOX_REGISTER_2

MAILBOX_REGISTER_3

MAILBOX_REGISTER_4

MAILBOX_REGISTER_5

MAILBOX_REGISTER_6

MAILBOX_REGISTER_7

PCI_TO_LOC_DOORBELL

LOC_TO_PCI_DOORBELL

INT_CTRL_STATUS

PROM_CTRL_CMD_CODES_CTRL

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 21

DEVICE_ID_VENDOR_ID

REVISION_ID

MAILBOX_REG_0

MAILBOX_REG_1

*** Messaging Queue Registers ***

OUT_POST_Q_INT_STATUS

OUT_POST_Q_INT_MASK

IN_Q_PORT

OUT_Q_PORT

MSG_UNIT_CONFIG

Q_BASE_ADDR

IN_FREE_HEAD_PTR

IN_FREE_TAIL_PTR

IN_POST_HEAD_PTR

IN_POST_TAIL_PTR

OUT_FREE_HEAD_PTR

OUT_FREE_TAIL_PTR

OUT_POST_HEAD_PTR

OUT_POST_TAIL_PTR

Q_STATUS_CTRL_REG

ULONG *pulValue - Pointer to the location where the value read is to be stored

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 22

EXAMPLE:

int FileDesc[2];
REG_PARAM theReg;
ULONG ulValue;
int FLASH2Slot = 1;

theReg.pulValue = &ulValue;
theReg.eFLASH2Register = PCI_TO_LOC_ADDR_0_RNG;

if (ioctl(FileDesc[FLASH2Slot], READ_REGISTER, (int) &theReg) ==

ERROR)
{

 logMsg("Read Register Failed for Slot #%d\n\n", FLASH2Slot,

0, 0, 0, 0, 0);
}

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 23

5.7.3 WRITE_REGISTER

The WRITE_REGISTER function writes a value to one of the FLASH2 Registers.

arg PARAMETER:

REG_PARAM *

where REG_PARAM is defined to be

typedef struct RegParam
{

int eFLASH2Register;
ULONG *pulValue;

} REG_PARAM;

and,

int eFLASH2Register - One of the following registers to write. Refer to the FLASH2 and
PLX Hardware documentation for a description of each
register.

*** DMA Registers ***

DMA_CH_0_MODE

DMA_CH_0_PCI_ADDR

DMA_CH_0_LOCAL_ADDR

DMA_CH_0_TRANS_BYTE_CNT

DMA_CH_0_DESC_PTR

DMA_CH_1_MODE

DMA_CH_1_PCI_ADDR

DMA_CH_1_LOCAL_ADDR

DMA_CH_1_TRANS_BYTE_CNT

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 24

DMA_CH_1_DESC_PTR

DMA_CMD_STATUS

DMA_MODE_ARB_REG

DMA_THRESHOLD_REG

*** PCI Configuration Registers ***

DEVICE_VENDOR_ID

STATUS_COMMAND

CLASS_CODE_REVISION_ID

BIST_HDR_TYPE_LAT_CACHE_SIZE

PCI_MEM_BASE_ADDR

PCI_IO_BASE_ADDR

PCI_BASE_ADDR_0

PCI_BASE_ADDR_1

CARDBUS_CIS_PTR

SUBSYS_ID_VENDOR_ID

PCI_BASE_ADDR_LOC_ROM

LAT_GNT_INT_PIN_LINE

*** Local Configuration Registers. ***

PCI_TO_LOC_ADDR_0_RNG

LOC_BASE_ADDR_REMAP_0

MODE_ARBITRATION

BIG_LITTLE_ENDIAN_DESC

PCI_TO_LOC_ROM_RNG

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 25

LOC_BASE_ADDR_REMAP_EXP_ROM

BUS_REG_DESC_0_FOR_PCI_LOC

DIR_MASTER_TO_PCI_RNG

LOC_ADDR_FOR_DIR_MASTER_MEM

LOC_ADDR_FOR_DIR_MASTER_IO

PCI_ADDR_REMAP_DIR_MASTER

PCI_CFG_ADDR_DIR_MASTER_IO

PCI_TO_LOC_ADDR_1_RNG

LOC_BASE_ADDR_REMAP_1

BUS_REG_DESC_1_FOR_PCI_LOC

*** Run Time Registers ***

MAILBOX_REGISTER_0

MAILBOX_REGISTER_1

MAILBOX_REGISTER_2

MAILBOX_REGISTER_3

MAILBOX_REGISTER_4

MAILBOX_REGISTER_5

MAILBOX_REGISTER_6

MAILBOX_REGISTER_7

PCI_TO_LOC_DOORBELL

LOC_TO_PCI_DOORBELL

INT_CTRL_STATUS

PROM_CTRL_CMD_CODES_CTRL

DEVICE_ID_VENDOR_ID

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 26

REVISION_ID

MAILBOX_REG_0

MAILBOX_REG_1

*** Messaging Queue Registers ***

OUT_POST_Q_INT_STATUS

OUT_POST_Q_INT_MASK

IN_Q_PORT

OUT_Q_PORT

MSG_UNIT_CONFIG

Q_BASE_ADDR

IN_FREE_HEAD_PTR

IN_FREE_TAIL_PTR

IN_POST_HEAD_PTR

IN_POST_TAIL_PTR

OUT_FREE_HEAD_PTR

OUT_FREE_TAIL_PTR

OUT_POST_HEAD_PTR

OUT_POST_TAIL_PTR

Q_STATUS_CTRL_REG

ULONG *pulValue - Pointer to the location containing the value to be written.

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 27

EXAMPLE:

int FileDesc[2];
REG_ PARAM theReg;
ULONG ulValue = 0xFC000000;
int FLASH2Slot = 1;

theReg.pulValue = &ulValue;
theReg.eFLASH2Register = PCI_TO_LOC_ADDR_0_RNG;

if (ioctl(FileDesc[FLASH2Slot], WRITE_REGISTER, (int) &theReg) ==

ERROR)
{
 logMsg("Write Register Failed for Slot #%d\n\n", FLASH2Slot,

0, 0, 0, 0, 0);

}

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 28

5.7.4 GET_DEVICE_ERROR

The GET_DEVICE_ERROR function will return the error that occurred on the last call to
one of the FLASH2 Device Driver entry points. Whenever a driver function is called and it
returns an error, this function may be called to determine the cause of the error.

arg PARAMETER:

int * - Pointer to the location of where the error code is to be written. It will be one of the
following:

NO_ERR - No Error Occurred.

INVALID_PARAMETER_ERR - An Invalid Parameter was sent to driver.

RESOURCE_ERR - The driver could not obtain a resource (memory or semaphore) to
perform its function.

DEVICE_ADD_ERROR - Failure occurred when the FLASH2DrvInstall function fails
when trying to add device to the VxWorks Operating
System.

ALREADY_OPEN_ERROR - A call to the open driver access routine for a device that
is already open.

INVALID_DRV_NUM_ERR - Returned from the FLASH2DrvInstall function if an
invalid driver number was obtained when trying to add
the device driver to the VxWorks operating system.
Also returned from the FLASH2DrvRemove function
if the driver failed to remove the device driver from the
VxWorks operating system.

ALREADY_INSTALLED_ERR - Returned from the FLASH2DrvInstall function if the
driver has already been installed.

PCI_CONFIG_ERR - Returned from the FLASH2DrvInstall function if a read or write
of a PCI Configuration Register fails.

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 29

EXAMPLE:

int FileDesc[2];
int FLASH2Slot = 1;
int Status;

/* Send the Get Device Error Code Command for this channel */
if (ioctl(FileDesc[FLASH2Slot], GET_DEVICE_ERROR, (int) &Status) ==
ERROR)
{
 logMsg("Get Device Error Code Failed for Slot #%d\n\n",

 FLASH2Slot, 0, 0, 0, 0, 0);
}

PMC-FLASH2 VxWorks Device Driver User’s Manual

 October 20, 1999 30

5.7.5 GET_BASE_ADDRESS

The GET_BASE_ADDRESS function will return to the user the address at which the
board was installed using the FLASHDrvInstall() routine.

arg PARAMETER:

unsigned long * - Pointer to the location where the base address is to be written.

EXAMPLE:

int FileDesc[2];
int FLASH2Slot = 1;
ULONG ulBaseAddress;

if (ioctl(FileDesc[FLASH2Slot], GET_BASE_ADDRESS, (int)
&ulBaseAddress) == ERROR)
{

logMsg("Get Base Address Failed for Slot #%d\n\n", FLASH2Slot, 0,
0, 0, 0, 0);

}

