

SIO4/8
Four/Eight Channel High Speed Serial I/O

All SIO4 and SIO8 Models
All Form Factors

All Standard Zilog Versions

Asynchronous Protocol Library
Reference Manual

Manual Revision: September 7, 2015

Library Release Version: 1.1

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

SIO4/8, Asynchronous Protocol Library, Reference Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2014-2015, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com/

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this material, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose. Although extensive editing

and reviews are performed before release to ECO control, General Standards Corporation assumes no

responsibility for any errors that may exist in this document. No commitment is made to update or keep current the

information contained in this document.

General Standards Corporation does not assume any liability arising out of the application or use of any product

or circuit described herein, nor is any license conveyed under any patent rights or any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this product to improve

reliability, performance, function, or design.

ALL RIGHTS RESERVED.

The Purchaser of this software may use or modify in source form the subject software, but not to re-market or

distribute it to outside agencies or separate internal company divisions. The software, however, may be embedded in

the Purchaser’s distributed software. In the event the Purchaser’s customers require the software source code, then

they would have to purchase their own copy of the software.

General Standards Corporation makes no warranty of any kind with regard to this software, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose and makes this software

available solely on an “as-is” basis. General Standards Corporation reserves the right to make changes in this

software without reservation and without notification to its users.

The information in this document is subject to change without notice. This document may be copied or reproduced

provided it is in support of products from General Standards Corporation. For any other use, no part of this

document may be copied or reproduced in any form or by any means without prior written consent of General

Standards Corporation.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

Zilog and Z16C30 are trademarks of Zilog, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

SIO4/8, Asynchronous Protocol Library, Reference Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 5

1.1. Purpose .. 5

1.2. Acronyms ... 5

1.3. Definitions .. 5

1.4. Software Overview .. 5

1.5. Hardware Overview .. 5

1.6. Reference Material .. 6

2. The Asynchronous Serial Protocol .. 7

2.1. Description ... 7

2.2. History.. 7

3. Library Interface .. 8

3.1. High Level Functions .. 8
3.1.1. sio4_async_close() ... 8
3.1.2. sio4_async_get() ... 8
3.1.3. sio4_async_init() .. 9
3.1.4. sio4_async_ioctl() ... 9
3.1.5. sio4_async_lib_init() .. 10
3.1.6. sio4_async_open() .. 10
3.1.7. sio4_async_read() ... 10
3.1.8. sio4_async_set() ... 11
3.1.9. sio4_async_show() ... 11
3.1.10. sio4_async_version() .. 12
3.1.11. sio4_async_write() ... 12

3.2. Low Level Functions ... 13

3.3. Data Structures ... 14
3.3.1. sio4_async_t ... 14

4. Operation ... 35

4.1. Basic Illustration ... 35

4.2. Clocking Configurations... 35

4.3. Error and Status Detection .. 36
4.3.1. Interrupt Events .. 37
4.3.2. Rx Status Word... 37

4.4. Debugging Aids ... 37
4.4.1. sio4_async_show() ... 37
4.4.2. sio4_reg_list() ... 38

4.5. Exclusions .. 38
4.5.1. Global Rx FIFO Full Configuration ... 38

Document History ... 39

SIO4/8, Asynchronous Protocol Library, Reference Manual

4

General Standards Corporation, Phone: (256) 880-8787

Table of Figures

Figure 1 A depiction of an Asynchronous data stream. ... 7

Figure 2 A functional illustration of an SIO4B or later model board. ... 35

Figure 3 This illustrates the default Asynchronous clock routing on SIO4B and later model boards. 36

SIO4/8, Asynchronous Protocol Library, Reference Manual

5

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

This document provides information on the Asynchronous Protocol Library, which is a library designed to facilitate

use of the Asynchronous serial protocol with an SIO4 or SIO8.

1.1. Purpose

The purpose of this document is twofold. First, it is intended to give a basic description of the Asynchronous

protocol. Second, it is intended to give a complete description of the Asynchronous Protocol Library interface.

1.2. Acronyms

The following is a list of commonly occurring acronyms used throughout this document.

Acronyms Description

DMA Direct Memory Access

GSC General Standards Corporation

PCI Peripheral Component Interconnect

PMC PCI Mezzanine Card

USC Universal Serial Controller

1.3. Definitions

The following is a list of commonly occurring terms used throughout this document.

Term Definition

Application Application means the user mode process, which runs in user space with user mode privileges.

ASYNC This refers to the Asynchronous serial protocol.

Driver Driver means the executable programming providing the direct access to the SIO4 hardware.

SIO4 This is used as a general reference to any Zilog based board supported by this driver. This includes

both SIO4 and SIO8 model boards. It is also used to refer to revisions of the board that do not

include a suffix following the ‘4’, such as SIO4A or SIO4B.

1.4. Software Overview

The Asynchronous Protocol Library is a statically linked library providing an Asynchronous centric interface to the

SIO4 device driver. The library is provided in source form and must be built before being used. The library is a thin

software layer that sits between an SIO4 application and the SIO4 device driver. The interface provided by the

library is Asynchronous specific and is a simplified rendition of the IOCTL services that are part of the overall

driver interface. The library exists in parallel with the driver interface. Applications are free to use the library

interface and the driver interface at will. The only requirements are that applications must use the library’s

sio4_async_lib_init(), sio4_async_open() and sio4_async_close() functions.

1.5. Hardware Overview

NOTE: The SIO8 boards appear to the system as two SIO4 boards.

The SIO4 is a four channel high-speed serial interface I/O board. This board provides for bi-directional serial data

transfers between the SIO4 and remote devices. The SIO4 board includes two DMA controllers and comes with a

maximum of 256K Bytes of FIFO storage, which is 32K per channel per direction (32K * 2 * 4). The FIFO

configuration can vary greatly from one SIO4 version to another (i.e. 32K * 2 * 4 to 512 * 2 * 2 to none at all). The

SIO4 can be configured with a number of different cable transceivers. The transceivers can be fixed as RS232 or

RS422, or they can be changed programmatically to a number of different options. The Zilog version of the SIO4

SIO4/8, Asynchronous Protocol Library, Reference Manual

6

General Standards Corporation, Phone: (256) 880-8787

supports a number of different serial protocols by use of a pair of dual Universal Serial Controllers (the Zilog

Z16C30). This includes Asynchronous, Monosync, Bisync, HDLC, Isochronous and others.

1.6. Reference Material

The following reference material may be of particular benefit in using the SIO4 and this driver. The specifications

provide the information necessary for an in depth understanding of the specialized features implemented on this

board.

 The applicable SIO4/SIO8 User Manual from General Standards Corporation.

 The applicable SIO4/SIO8 Driver User Manual from General Standards Corporation.

 The PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com/

 The Z16C30 USC User’s Manual from Zilog.

Zilog, Inc.

910 E Hamilton Ave

Campbell, California 95008 USA

Phone: 1-408-558-8500

WEB: Thttp://www.zilog.com/

http://www.plxtech.com/
http://www.zilog.com/

SIO4/8, Asynchronous Protocol Library, Reference Manual

7

General Standards Corporation, Phone: (256) 880-8787

2. The Asynchronous Serial Protocol

2.1. Description

The Asynchronous serial communications protocol is a byte oriented serial transmission protocol consisting of a

Start Bit, a number of data bits, an optional Parity Bit, and up to two Stop Bits. For successful data transfer the

provider and recipient must agree upon the transmission rate, the number of data bits, the use and type of parity, and

the minimum length of the Stop Bit period. Refer to Figure 1 below. When no data is being transmitted the line is

idle. When idle the line is held in the high or Mark state (a 1 bit). On the receiving side, a transition from high to low

signals the beginning of a Start Bit. From this point the line level is sampled at about the center of each bit period.

At the center of the Start Bit period, the line level is examined. If it is high, then the high to low transition is ignored

as noise, and the decoding logic returns to waiting for another high-to-low transition. If the line is still low (the

Space state, which is a 0 bit) then decoding continues per the byte size, use of parity and at least ½ Stop Bit. If parity

is used then the Parity Bit is evaluated with the data. If the evaluation fails, then the result is a Parity Error. After the

last data bit and optional Parity Bit, the Stop Bit period begins. If the line is low when the Stop Bit is sampled, then

the result is a Framing Error.

Clock

Data

One Clock Cycle

Start Bit
Parity Bit

(optional)
Up To 2 Stop Bits1 to 8 Data Bits Idle Period

Figure 1 A depiction of an Asynchronous data stream.

The minimum signals needed for full-duplex communication are TxD and RxD (Transmit Data and Receive Data).

Hardware flow control requires additional signals. The RTS/CTS flow control mechanism requires two additional

signals. (RTS refers to Request To Send and CTS refers to Clear To Send.) The DTR/DSR flow control mechanism

also requires two signals. (DTR refers to Data Terminal Ready and DST refers to Data Set Ready.) Communications

with a modem may also use the DCD signal (DCD refers to Data Carrier Detect).

Equipment using the Asynchronous protocol usually uses the RS-232 line protocol. The number of signals varies

with individual implementations and the set of supported signals. The arrangement of the supported signals is

typically DCE or DTE, or some other custom implementation. (DCE refers to Data Communications Equipment and

DTE refers to Data Terminal Equipment.) The typical upper baud rate limit is 115,200 bits-per-second. Higher rates

are possible with special RS-232 transceivers or by using other than RS-232.

2.2. History

The Asynchronous serial communications protocol has its origins prior to 1920, back in the days of the early

electromechanical teletypewriter. At that time byte sizes were typically five-bits and the Stop Bit period was

typically 1.5 times the bit period. Since then byte size support typically ranges from five to eight bits, and the Stop

Bit period may be configurable in fractional increments from just over ½ bit period to two bit periods.

SIO4/8, Asynchronous Protocol Library, Reference Manual

8

General Standards Corporation, Phone: (256) 880-8787

3. Library Interface

The library header file is sio4_async.h. Including this header in a source file gives the source the full library

and driver interface as the library header file includes the driver header files sio4.h and sio4_usc.h. The

library header is located in the …/sio4/async/lib/ directory. The library and all associated files are included

as part of the driver archive.

3.1. High Level Functions

The library header defines the complete Asynchronous interface offered by the library, which includes the following

high level function declarations.

3.1.1. sio4_async_close()

This function is the entry point to close a connection previously opened to an SIO4 for Asynchronous operation. All

resources allocated by the library for the opened device are released as part of the close operation. This includes

freeing allocated memory and closing access to the SIO4 serial channel.

Prototype

int sio4_async_close(int fd);

Argument Description

fd This is a file descriptor obtained by calling sio4_async_open() (section 3.1.6, page

10).

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.2. sio4_async_get()

This function retrieves the current settings from the SIO4 for each of the referenced structure’s fields. This function

operates mostly by calling the low level functions corresponding to each field of the sio4_async_t structure.

Prototype

int sio4_async_get(int fd, sio4_async_t* async, const char** err);

Argument Description

fd This is a file descriptor obtained by calling sio4_async_open() (section 3.1.6, page

10).

async This is the structure where the current settings are recorded (section 3.3.1, page 14). Any

field pertaining to an unsupported feature will be set to -1. The value -2 indicates a

hardware setting that is invalid.

err In the event of an error this will be set to identify the source of the error. The caller may

provide a NULL pointer.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

SIO4/8, Asynchronous Protocol Library, Reference Manual

9

General Standards Corporation, Phone: (256) 880-8787

3.1.3. sio4_async_init()

This function initializes an sio4_async_t structure according to the capabilities of the accessed device and some

basic caller preferences. This function operates mostly by calling the low level functions corresponding to each field

of the sio4_async_t structure.

Prototype

int sio4_async_init(

 int fd,

 const sio4_async_init_t* init,

 sio4_async_t* async,

 const char** err);

Argument Description

fd This is a file descriptor obtained by calling sio4_async_open() (section 3.1.6, page

10).

init This structure provides the basic information needed prior to initializing the next argument.

See below for more information.

async This is the structure that the call will initialize (section 3.3.1, page 14).

err In the event of an error this will be set to identify the source of the error. The caller may

provide a NULL pointer.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

Data Type

This structure contains information used to configure Asynchronous clocking for the USC transmitter and receiver.

typedef struct

{

 s32 tx_bit_rate;

 s32 rx_bit_rate;

 s32 osc_prog;

} sio4_async_init_t;

Field Description

tx_bit_rate This is the desired bit rate for the transmitter. This value must be greater than or equal

to one, and less than or equal to 1,250,000.

rx_bit_rate This is the desired bit rate for the receiver. This value must be greater than or equal to

one, and less than or equal to 1,250,000.

osc_prog This is the frequency to which the channel’s on-board oscillator is to be programmed.

This should be the highest possible multiple of the Tx and Rx bit rates. If the on-board

oscillator is not programmable, then this should be set to the frequency of the fixed on-

board oscillator. The default rate is 20,000,000.

3.1.4. sio4_async_ioctl()

This function is the entry point to performing IOCTL operations on the device. Refer to the driver reference manual

for complete information on the driver’s set of IOCTL services.

SIO4/8, Asynchronous Protocol Library, Reference Manual

10

General Standards Corporation, Phone: (256) 880-8787

Prototype

int sio4_async_ioctl(int fd, int cmd, void* arg);

Argument Description

fd This is a file descriptor obtained by calling sio4_async_open() (section 3.1.6, page

10).

cmd This is an IOCTL service macro from the driver header files.

arg This is the argument required for the above referenced IOCTL service.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.5. sio4_async_lib_init()

This function is required in order to prepare the Asynchronous Protocol Library for operation. This must be the first

call to the library.

Prototype

int sio4_async_lib_init(void);

Argument Description

None The function has no arguments.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.6. sio4_async_open()

This function is the entry point to open a connection to an SIO4 serial channel for Asynchronous operation. The

handle returned by this call is used for all subsequent access to the specified channel. The handle can be used for

access via the library’s high level functions, the library’s low level functions, and via the driver interface.

Prototype

int sio4_async_open(int index);

Argument Description

index This is the zero based index of the SIO4 serial channel to access.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

>= 0 A valid file access handle.

3.1.7. sio4_async_read()

This function requests that a buffer of data be read from the serial channel. The request will return either when it has

been fulfilled or the read timeout expires, whichever occurs first.

NOTE: A read request returns an error if a read is already active.

SIO4/8, Asynchronous Protocol Library, Reference Manual

11

General Standards Corporation, Phone: (256) 880-8787

Prototype

int sio4_async_read(int fd, void* buf, size_t size);

Argument Description

fd This is a file descriptor obtained by calling sio4_async_open() (section 3.1.6, page

10).

buf The data read is placed here.

size Read up to this number of bytes.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

>= 0 This is the number of bytes placed in the buffer.

3.1.8. sio4_async_set()

This function configures an SIO4 channel according to the settings of the referenced sio4_async_t structure. All

fields are validated before any settings are applied. This function operates mostly by calling the low level functions

corresponding to each field of the sio4_async_t structure.

NOTE: Before calling this function the structure should, at minimum, be initialized by calling the

sio4_async_init() function (section 3.1.3, page 9).

Prototype

int sio4_async_set(

 int fd,

 const sio4_async_t* async,

 const char** err);

Argument Description

fd This is a file descriptor obtained by calling sio4_async_open() (section 3.1.6, page

10).

async This is the structure containing the settings to be applied (section 3.3.1, page 14).

err In the event of an error this will be set to identify the source of the error. The caller may

provide a NULL pointer.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.9. sio4_async_show()

This function displays the content of the referenced sio4_async_t structure to the screen. This is provided to

assist debugging efforts. This function operates mostly by calling the low level functions corresponding to each field

of the sio4_async_t structure.

Prototype

int sio4_async_show(

 int fd,

 const sio4_async_t* async,

 const char** err);

SIO4/8, Asynchronous Protocol Library, Reference Manual

12

General Standards Corporation, Phone: (256) 880-8787

Argument Description

fd This is a file descriptor obtained by calling sio4_async_open() (section 3.1.6, page

10).

async This is the structure whose content will be displayed (section 3.3.1, page 14).

err In the event of an error this will be set to identify the source of the error. The caller may

provide a NULL pointer.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.10. sio4_async_version()

This function retrieves the library’s version number and build date and time.

Prototype

int sio4_async_version(const char** version, const char** built);

Argument Description

fd This is a file descriptor obtained by calling sio4_async_open() (section 3.1.6, page

10).

version The library version number is returned here. The caller may provide a NULL pointer. The

pointer returned refers to a static buffer.

built The library build date and time are returned here. The string is formatted as if produced by

the the C statement printf(__DATE__ ″, ″ __TIME__);. The caller may provide a

NULL pointer. The pointer returned refers to a static buffer.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.11. sio4_async_write()

This function requests that a buffer of data be written to the serial channel. The request will return either when it has

been fulfilled or the write timeout expires, whichever is first.

Prototype

int sio4_async_write(int fd, const void* buf, size_t size);

Argument Description

fd This is a file descriptor obtained by calling sio4_async_open() (section 3.1.6, page

10).

buf This is the source for the data to write.

size Write at most this number of bytes.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

>= 0 This is the number of bytes written from the buffer.

SIO4/8, Asynchronous Protocol Library, Reference Manual

13

General Standards Corporation, Phone: (256) 880-8787

3.2. Low Level Functions

The low level functions provide access to the board features reflected by the individual fields of the

sio4_async_t structure (section 3.3.1, page 14). This structure is used to access all of the board features that are

part of the Asynchronous Protocol Library. For each structure field there is a corresponding board feature and an

associated low level function. When calling the high level functions that use the sio4_async_t structure, the

high level functions perform their work by calling the low level functions for each structure field. This is especially

useful for activities such as structure initialization and board configuration. Following high level configuration of

the board though, there are times when an application may need to access features represented by only a subset of

the sio4_async_t structure fields. This is where an application can make use of the low level function. All of the

low level functions follow the prototype pattern shown below. The function naming convention includes the prefix

“sio4_async_t_” followed by the C style field name, but with the periods (“.”) replaced by underscores (“_”).

NOTE: The low level functions do not accept NULL pointers.

Prototype

void sio4_async_t_field_name(int fd, s32* arg,

 sio4_async_action_t action, const char** err);

Argument Description

fd This is a file descriptor obtained by calling sio4_async_open() (section 3.1.6, page

10).

arg This refers to the feature specific value being passed in to the function. This pointer must

not be NULL.

action This identifies the specific action to be carried out in regards to the above feature specific

value. See the sio4_async_action_t data type below.

err If there is an error, then this field will be set to point to a string localizing the error. The

caller may pass in a NULL pointer.

Data Type

This enumeration identifies the specific action requested when a low level function is called.

typedef enum

{

 SIO4_ASYNC_ACTION_GET,

 SIO4_ASYNC_ACTION_INIT,

 SIO4_ASYNC_ACTION_SET,

 SIO4_ASYNC_ACTION_SHOW,

 SIO4_ASYNC_ACTION_VERIFY

} sio4_async_action_t;

Value Description

SIO4_ASYNC_ACTION_GET This requests the current setting from the driver.

SIO4_ASYNC_ACTION_INIT This requests the initialization value from the library.

SIO4_ASYNC_ACTION_SET This requests that the supplied value be applied by the driver.

SIO4_ASYNC_ACTION_SHOW This requests that the supplied value be displayed to the screen.

SIO4_ASYNC_ACTION_VERIFY This requests that the supplied value be verified.

SIO4/8, Asynchronous Protocol Library, Reference Manual

14

General Standards Corporation, Phone: (256) 880-8787

Examples

For simplicity sake a low level function name can easily be derived given any field name, as shown in the below

examples. The individual low level function names are identified with the corresponding structure fields beginning

in section 3.3.1, page 14.

Field Function

sio4_async_t.cable.loopback.mode sio4_async_t_cable_loopback_mode()

sio4_async_t.rx.encoding sio4_async_t_rx_encoding()

sio4_async_t.tx.parity.enable sio4_async_t_tx_parity_enable()

3.3. Data Structures

The library header file is sio4_async.h. Including this header in a source file gives that source the full library

and driver interface. The library header defines the complete Asynchronous interface offered by the library, which

includes the following data structures and their associated macros and low level function declarations.

3.3.1. sio4_async_t

This structure contains all of the parameters used to configure an SIO4 channel for Asynchronous operation. The

structure is initialized with default values by calling the sio4_async_init() function (section 3.1.3, page 9).

Following this call, applications make changes to this structure’s content according to their own requirements.

Afterwards, the structure is passed to the sio4_async_set() function (section 3.1.7, page 10) where the

settings are applied to the board.

typedef struct

{

 // All fields are filled in by the library when calling

 // sio4_async_init(). Application mods must be made before calling

 // sio4_async_set().

 struct

 {

 s32 ref;

 s32 prog;

 } osc;

 Struct // cable

 {

 s32 enable; // PSRCR D31

 s32 mode; // PSRCR D28, DCE or DTE

 s32 protocol; // PSRSR D24-D27

 s32 txc; // PSRCR D6-D8

 s32 txd; // PSRCR D19-D20

 s32 txaux; // PSRCR D17-D18

 s32 dcd; // PSRCR D15-D16

 s32 dtr_dsr; // PSRCR D21-D22

 s32 rts; // PSRCR D13-D14

 struct

 {

 s32 mode; // PSRCR D23, D29

 } loopback;

SIO4/8, Asynchronous Protocol Library, Reference Manual

15

General Standards Corporation, Phone: (256) 880-8787

 struct

 {

 s32 enable; // PSRCR D30

 } term;

 struct

 {

 s32 txc; // CCR 0x3333

 s32 txd_cts; // CSR D2-D3

 s32 rxc; // CCR 0xCCCC

 s32 rxd_dcd; // CSR D4-D5

 } legacy;

 } cable;

 Struct // tx

 {

 s32 mode; // USC CMR D8-D11

 s32 enable; // USC TMR D0-D1

 s32 char_len; // USC TMR D2-D4

 s32 encoding; // USC TMR D13-D15

 s32 bit_rate; // reflects sio4_async_init_t.tx_bit_rate

 s32 idle_cond; // USC TCSR D8-D10

 struct

 {

 s32 enable; // USC TMR D5

 s32 type; // USC TMR D6-D7

 } parity;

 struct

 {

 s32 size; // FSR D0-D15, read-only

 s32 ae; // TAR D0-D15

 s32 af; // TAR D16-D31

 s32 empty_cfg; // CSR D18, D26

 s32 space_cfg; // CSR D4-D5

 } fifo;

 struct

 {

 s32 mode;

 s32 pio_thresh;

 s32 timeout;

 s32 overrun;

 } io;

 } tx;

 Struct // rx

 {

 s32 mode; // USC CMR D0-D3

 s32 enable; // USC RMR D0-D1

 s32 char_len; // USC RMR D2-D4

 s32 encoding; // USC RMR D13-D15

 s32 bit_rate; // reflects sio4_async_init_t.rx_bit_rate

 s32 sync_byte; // SBR D0-D7

SIO4/8, Asynchronous Protocol Library, Reference Manual

16

General Standards Corporation, Phone: (256) 880-8787

 s32 status_word;// CSR D3

 struct

 {

 s32 enable; // USC RMR D5

 s32 type; // USC RMR D6-D7

 } parity;

 struct

 {

 s32 size; // FSR D16-D21, read-only

 s32 ae; // RAR D0-D15

 s32 af; // RAR D16-D31

 s32 full_cfg; // BCR D8

 } fifo;

 struct

 {

 s32 mode;

 s32 pio_thresh;

 s32 timeout;

 s32 overrun;

 s32 underrun;

 } io;

 struct

 {

 s32 enable; // CSR D2

 s32 clk_src; // BCR D22

 } time_stamp;

 } rx;

 Struct // usc

 {

 s32 mode; // USC CCAR D8-D9

 s32 txd; // USC IOCR D6-D7

 s32 cts; // PSRCR D9-D10, USC IOCR D14-D15

 s32 cts_legacy; // USC IOCR D14-D15

 s32 dcd; // PSRCR D11-D12, USC IOCR D12-D13

 s32 dcd_legacy; // USC IOCR D12-D13

 // All of the folling USC fields are initialized

 // by sio4_async_init() based on the content of the

 // sio4_async_init_t structure.

 struct

 {

 s32 clk_rate; // USC CMR D4-D5

 s32 clk_src; // USC CMCR D3-D5

 s32 txc; // PSRCR D0-D2, USC IOCR D3-D5

 s32 txc_legacy; // USC IOCR D3-D5

 s32 stop_bits; // USC CMR D14

 } tx;

 struct

 {

SIO4/8, Asynchronous Protocol Library, Reference Manual

17

General Standards Corporation, Phone: (256) 880-8787

 s32 clk_rate; // USC CMR D12-D13

 s32 clk_src; // USC CMCR D0-D2

 s32 rxc; // PSRCR D3-D5, USC IOCR D0-D2

 s32 rxc_legacy; // USC IOCR D0-D2

 } rx;

 struct

 {

 s32 enable; // USC HCR D0

 s32 clk_src; // USC CMCR D8-D9

 s32 divider; // USC TC1R D0-D15

 s32 mode; // USC HCR D1

 } brg0;

 struct

 {

 s32 enable; // USC HCR D4

 s32 clk_src; // USC CMCR D10-D11

 s32 divider; // USC TC0R D0-D15

 s32 mode; // USC HCR D5

 } brg1;

 struct

 {

 s32 clk_src; // USC CMCR D12-D13

 s32 rate; // USC HCR D14-D15

 } ctr0;

 struct

 {

 s32 clk_src; // USC CMCR D14-D15

 s32 rate_src; // USC HCR D13, ...

 } ctr1;

 struct

 {

 s32 rate; // USC HCR D10-D11

 } dpll;

 } usc;

} sio4_async_t;

3.3.1.1. sio4_async_t.osc

This section describes the structure’s oscillator configuration fields.

Field Description

osc This structure configures the oscillator interface.

osc.

ref

This field specifies the frequency of the fixed onboard reference oscillator. The default is 20MHz. The

feature’s low level function is sio4_async_t_osc_ref(). This value is provided for informational

purposes only.

osc.

prog

This field specifies the desired programmable oscillator frequency. This is essentially the clock frequency

provided by the onboard programmable oscillator to the USC. The default is 20MHz. The feature’s low

level function is sio4_async_t_osc_prog(). The value provided is not recorded for later retrieval.

Retrieval requests return one if oscillator programming is supported and zero if it isn’t.

SIO4/8, Asynchronous Protocol Library, Reference Manual

18

General Standards Corporation, Phone: (256) 880-8787

3.3.1.2. sio4_async_t.cable

This section describes the structure’s cable configuration fields.

Field Description

cable This structure configures the cable interface.

cable.

enable

This field either enables or disables the cable transceivers. Valid values are given in the table

below. The feature’s low level function is sio4_async_t_cable_enable().

Value Description

SIO4_ASYNC_CABLE_ENABLE_NO Disable the cable transceivers.

SIO4_ASYNC_CABLE_ENABLE_YES Enable the cable transceivers. This is the default.

cable.

mode

This field specifies the arrangement of the signals on the cable interface. Valid values are given in

the table below. The feature’s low level function is sio4_async_t_cable_mode().

Value Description

SIO4_ASYNC_CABLE_MODE_DCE Select the DCE cable signal configuration.

SIO4_ASYNC_CABLE_MODE_DTE Select the DTE cable signal configuration. This is the

default.

cable.

Protocol

This field specifies the cable transceiver configuration. The options available depend on the

board’s transceiver capabilities. Valid values are given in the table below. The feature’s low level

function is sio4_async_t_cable_protocol().

Value Description

SIO4_ASYNC_CABLE_PROTOCOL_DISABLE This disables the cable transceivers.

SIO4_ASYNC_CABLE_PROTOCOL_RS232 This selects the RS232 protocol. This

is the default.

SIO4_ASYNC_CABLE_PROTOCOL_RS422_423_1 This selects the RS422/RS423 mixed

protocol version 1.

SIO4_ASYNC_CABLE_PROTOCOL_RS422_423_2 This selects the RS422/RS423 mixed

protocol version 2.

SIO4_ASYNC_CABLE_PROTOCOL_RS422_RS485 This selects the RS422/RS485 mixed

protocol.

SIO4_ASYNC_CABLE_PROTOCOL_RS423 This selects the RS423 protocol.

SIO4_ASYNC_CABLE_PROTOCOL_RS530 This selects the RS530 protocol,

version 1.

SIO4_ASYNC_CABLE_PROTOCOL_RS530A This selects the RS530 protocol,

version 2.

SIO4_ASYNC_CABLE_PROTOCOL_V35 This selects the V.35 protocol,

version 1.

SIO4_ASYNC_CABLE_PROTOCOL_V35A This selects the V.35 protocol,

version 2.

cable.

txc

This field specifies the configuration of the cable’s Tx Clock signal. Valid values are given in the

table below. The feature’s low level function is sio4_async_t_cable_txc().

Value Description

SIO4_ASYNC_CABLE_TXC_OUT_0 This drives the signal low.

SIO4_ASYNC_CABLE_TXC_OUT_1 This drives the signal high.

SIO4_ASYNC_CABLE_TXC_OUT_CBL_RXA This drives the signal from what appears at

the cable’s Rx Aux signal.

SIO4_ASYNC_CABLE_TXC_OUT_CBL_RXC This drives the signal from what appears at

the cable’s Rx Clock signal.

SIO4_ASYNC_CABLE_TXC_OUT_OSC This drives the signal from the onboard

oscillator.

SIO4_ASYNC_CABLE_TXC_OUT_OSC_INV This drives the signal from the inverted form

SIO4/8, Asynchronous Protocol Library, Reference Manual

19

General Standards Corporation, Phone: (256) 880-8787

of the onboard oscillator.

SIO4_ASYNC_CABLE_TXC_OUT_USC_RXC This drives the signal from what appears at

the USC’s Rx Clock pin.

SIO4_ASYNC_CABLE_TXC_OUT_USC_TXC This drives the signal from what appears at

the USC’s Tx Clock pin. This is the default.

cable.

txd

This field specifies the configuration of the cable’s Tx Data signal. Valid values are given in the

table below. The feature’s low level function is sio4_async_t_cable_txd().

Value Description

SIO4_ASYNC_CABLE_TXD_OUT_0 This drives the signal low.

SIO4_ASYNC_CABLE_TXD_OUT_1 This drives the signal high.

SIO4_ASYNC_CABLE_TXD_OUT_USC_TXD This drives the signal from what appears at

the USC’s Tx Data pin. This is the default.

cable.

txaux

This field specifies the configuration of the cable’s Tx Aux signal. Valid values are given in the

table below. The feature’s low level function is sio4_async_t_cable_txaux().

Value Description

SIO4_ASYNC_CABLE_TXAUX_OUT_0 This drives the signal low.

SIO4_ASYNC_CABLE_TXAUX_OUT_1 This drives the signal high.

SIO4_ASYNC_CABLE_TXAUX_OUT_OSC This drives the signal from the onboard

oscillator.

SIO4_ASYNC_CABLE_TXAUX_TRI This tri-states the drive segment of the

transceivers. This is the default.

cable.

dcd

This field specifies the cable DCD signal source when the cable signal is driven. Valid values are

given in the table below. The feature’s low level function is sio4_async_t_cable_dcd().

NOTE: Refer to the usc.dcd field (section 3.3.1.5, page 27) for affecting the cable signal’s

driven state.

Value Description

SIO4_ASYNC_CABLE_DCD_OUT_0 This drives the signal low.

SIO4_ASYNC_CABLE_DCD_OUT_1 This drives the signal high.

SIO4_ASYNC_CABLE_DCD_OUT_RTS This drives the signal from the Rx FIFO

Almost Full status.

SIO4_ASYNC_CABLE_DCD_OUT_USC_DCD This drives the signal from what appears at

the USC’s DCD pin. This is the default.

cable.

dtr_dsr

This field specifies the configuration of the cable’s DTR/DSR signal. Valid values are given in the

table below. The feature’s low level function is sio4_async_t_cable_dtr_dsr().

Value Description

SIO4_ASYNC_CABLE_DTR_DSR_OUT_0 This drives the signal low.

SIO4_ASYNC_CABLE_DTR_DSR_OUT_1 This drives the signal high.

SIO4_ASYNC_CABLE_DTR_DSR_IN This configures the signal as an input.

SIO4_ASYNC_CABLE_DTR_DSR_TRI This tri-states the drive segment of the

transceivers. This is the default.

cable.

rts

This field specifies the configuration of the cable’s RTS signal. Valid values are given in the table

below. The feature’s low level function is sio4_async_t_cable_rts().

Value Description

SIO4_ASYNC_CABLE_RTS_OUT_0 This drives the signal low.

SIO4_ASYNC_CABLE_RTS_OUT_1 This drives the signal high.

SIO4_ASYNC_CABLE_RTS_OUT_CTS This drives the signal from what appears at the

USC’s CTS pin.

SIO4_ASYNC_CABLE_RTS_OUT_RTS This drives the signal from the Rx FIFO Almost

Full status. This is the default.

SIO4/8, Asynchronous Protocol Library, Reference Manual

20

General Standards Corporation, Phone: (256) 880-8787

cable.

loopback

This structure configures the cable’s loopback feature.

cable.

loopback.

mode

This field specifies the loopback mode. Valid values are given in the table below. The feature’s

low level function is sio4_async_t_cable_loopback_mode().

Value Description

SIO4_ASYNC_LOOPBACK_MODE_DISABLE This disables loopback operation. This is

the default.

SIO4_ASYNC_LOOPBACK_MODE_EXTERNAL This selects the external loopback mode. *

SIO4_ASYNC_LOOPBACK_MODE_INTERNAL This selects the internal loopback mode.

* If external loopback mode is requested but not available, then the internal loopback mode is

selected.

cable.

term

This structure configures the cable’s termination feature. The operation of this feature depends on

the active cable transceiver type.

cable.

term.

enable

This field specifies the configuration of the transceiver’s built-in termination feature. Valid values

are given in the table below. The feature’s low level function is

sio4_async_t_cable_term_enable().

Value Description

SIO4_ASYNC_CABLE_TERM_ENABLE_NO The built-in termination is disabled. This is

the default.

SIO4_ASYNC_CABLE_TERM_ENABLE_YES The built-in termination is enabled.

cable.

legacy

This structure configures the cable’s legacy interface feature. These fields are utilized if the board

DCE/DTE cable configuration feature is unsupported by the board or is unused.

cable.

legacy.

txc

This field specifies the legacy configuration of the cable’s Tx Clock signal. Valid values are given

in the table below. The feature’s low level function is

sio4_async_t_cable_legacy_txc().

Value Description

SIO4_ASYNC_CABLE_LEGACY_TXC_DISABLE This disables the Tx Clock signal.

SIO4_ASYNC_CABLE_LEGACY_TXC_BOTH This drives the Tx Clock signal on both

the upper and lower group of pins.

SIO4_ASYNC_CABLE_LEGACY_TXC_LOW This drives the Tx Clock signal on the

lower group of pins.

SIO4_ASYNC_CABLE_LEGACY_TXC_UP This drives the Tx Clock signal on the

upper group of pins. This is the default.

cable.

legacy.

txd_cts

This field specifies the legacy configuration of the cable’s Tx Data and CTS signals. Valid values

are given in the table below. The feature’s low level function is

sio4_async_t_cable_legacy_txd_cts().

Value Description

SIO4_ASYNC_CABLE_LEGACY_TXD_CTS_BOTH This drives the signals on both the

upper and lower group of pins.

SIO4_ASYNC_CABLE_LEGACY_TXD_CTS_LOW This drives the signals on the lower

group of pins.

SIO4_ASYNC_CABLE_LEGACY_TXD_CTS_TRI This tri-states the signals.

SIO4_ASYNC_CABLE_LEGACY_TXD_CTS_UP This drives the signals on the upper

group of pins. This is the default.

SIO4/8, Asynchronous Protocol Library, Reference Manual

21

General Standards Corporation, Phone: (256) 880-8787

cable.

legacy.

rxc

This field specifies the legacy configuration of the cable’s Rx Clock signal. Valid values are given

in the table below. The feature’s low level function is

sio4_async_t_cable_legacy_rxc().

Value Description

SIO4_ASYNC_CABLE_LEGACY_RXC_DISABLE This disables the Rx Clock signal.

SIO4_ASYNC_CABLE_LEGACY_RXC_LOW This drives the Rx Clock signal on the

lower group of pins. This is the default.

SIO4_ASYNC_CABLE_LEGACY_RXC_UP This drives the Rx Clock signal on the

lower group of pins.

cable.

legacy.

rxd_dcd

This field specifies the legacy configuration of the cable’s Rx Data and DCD signals. Valid values

are given in the table below. The feature’s low level function is

sio4_async_t_cable_legacy_rxd_dcd().

Value Description

SIO4_ASYNC_CABLE_LEGACY_RXD_DCD_DISABLE This disables the signals.

SIO4_ASYNC_CABLE_LEGACY_RXD_DCD_LOW This uses the signals as inputs

from the lower group of pins. This

is the default.

SIO4_ASYNC_CABLE_LEGACY_RXD_DCD_UP This uses the signals as inputs

from the upper group of pins.

3.3.1.3. sio4_async_t.tx

This section describes the structure’s transmitter configuration fields.

Field Description

tx This structure configures the transmitter portion of the channel.

tx.

mode

This field specifies the transmitter’s operating mode. Valid values are given in the table below.

The feature’s low level function is sio4_async_t_tx_mode().

Value Description

SIO4_ASYNC_TX_MODE_ASYNC This selects the Asynchronous operating mode. This is

the default and the only valid option for this library.

tx.

enable

This field specifies if the transmitter is to be enabled. When configuration is begun (see

sio4_async_set(), section 3.1.7, page 10) the transmitter is initialized and disabled. The

option in this field is applied towards the end of the configuration process. Valid values are given

in the table below. The feature’s low level function is sio4_async_t_tx_enable().

Value Description

SIO4_ASYNC_TX_ENABLE_NO_AFTER This disables the transmitter after it has finished

the transmission in progress.

SIO4_ASYNC_TX_ENABLE_NO_NOW This disables the transmitter immediately.

SIO4_ASYNC_TX_ENABLE_YES_NOW This enables the transmitter immediately. This

is the default.

SIO4_ASYNC_TX_ENABLE_YES_W_AE This enables the transmitter according to the

state of any hardware flow control lines.

tx.

char_len

This field specifies if the size of transmitted characters. The length specified does not include the

Parity Bit, if Parity is enabled. The data bits are the lower significant bits of the byte. Valid

values are given in the table below. The feature’s low level function is

sio4_async_t_tx_char_len().

Value Description

SIO4_ASYNC_TX_CHAR_LEN_1 Characters are 1-bit in length.

SIO4_ASYNC_TX_CHAR_LEN_2 Characters are 2-bits in length.

SIO4/8, Asynchronous Protocol Library, Reference Manual

22

General Standards Corporation, Phone: (256) 880-8787

SIO4_ASYNC_TX_CHAR_LEN_3 Characters are 3-bits in length.

SIO4_ASYNC_TX_CHAR_LEN_4 Characters are 4-bits in length.

SIO4_ASYNC_TX_CHAR_LEN_5 Characters are 5-bits in length.

SIO4_ASYNC_TX_CHAR_LEN_6 Characters are 6-bits in length.

SIO4_ASYNC_TX_CHAR_LEN_7 Characters are 7-bits in length.

SIO4_ASYNC_TX_CHAR_LEN_8 Characters are 8-bits in length. This is the default.

tx.

encoding

This field specifies the encoding of the transmitted data. Valid values are given in the table

below. The feature’s low level function is sio4_async_t_tx_encoding().

Value Description

SIO4_ASYNC_TX_ENCODING_BI_MARK This refers to Biphase Mark encoding.

SIO4_ASYNC_TX_ENCODING_BI_LEVEL This refers to Biphase Level encoding.

SIO4_ASYNC_TX_ENCODING_BI_SPACE This refers to Biphase Space encoding.

SIO4_ASYNC_TX_ENCODING_D_BI_LEVEL This refers to Differential Biphase Level

encoding.

SIO4_ASYNC_TX_ENCODING_NRZ This refers to NRZ encoding. This is the

default.

SIO4_ASYNC_TX_ENCODING_NRZB This refers to NRZB encoding.

SIO4_ASYNC_TX_ENCODING_NRZI_MARK This refers to NRZI-Mark encoding.

SIO4_ASYNC_TX_ENCODING_NRZI_SPACE This refers to NRZI-Space encoding.

tx.

bit_rate

This specifies the desired transmission bit rate. During the sio4_async_init() call (section

3.1.3, page 9) this is set to the sio4_async_init_t.tx_bit_rate field value. During the

call, the library will automatically determine the USC configuration needed to best produce the

requested transmit bit rate. Before returning, this field is set to the bit rate that configuration will

produce. The feature’s low level function is sio4_async_t_tx_bit_rate(). The Tx Bit

Rate is used when the device is being configured, but the value is not recorded for later retrieval.

tx.

idle_cond

This field specifies what appears on the Tx Data cable signal while no data is being transmitted.

Valid values are given in the table below. The feature’s low level function is

sio4_async_t_tx_idle_cond().

Value Description

SIO4_ASYNC_TX_IDLE_COND_0 The Tx Data signal is driven low.

SIO4_ASYNC_TX_IDLE_COND_0_1 The Tx Data signal is alternately driven

low then high.

SIO4_ASYNC_TX_IDLE_COND_1 The Tx Data signal is driven high.

SIO4_ASYNC_TX_IDLE_COND_DEFAULT The Tx Data signal is driven with the

pattern that is the default for the selected

serial protocol. This is the default.

SIO4_ASYNC_TX_IDLE_COND_MARK The Tx Data signal is driven with the

Mark state.

SIO4_ASYNC_TX_IDLE_COND_MARK_SPACE The Tx Data signal is alternately driven

with the Mark and Space states.

SIO4_ASYNC_TX_IDLE_COND_SPACE The Tx Data signal is driven with the

Space state.

tx.

parity

This structure configures the transmitter’s use of Parity checking.

tx.

parity.

enable

This field enables or disables the use of Parity. When used, the Parity Bit appears to the

immediate left of the most significant data bit. Valid values are given in the table below. The

feature’s low level function is sio4_async_t_tx_parity_enable().

Value Description

SIO4_ASYNC_TX_PARITY_ENABLE_NO Do not generate a Parity bit. This is the

default.

SIO4_ASYNC_TX_PARITY_ENABLE_YES Do generate a Parity bit.

SIO4/8, Asynchronous Protocol Library, Reference Manual

23

General Standards Corporation, Phone: (256) 880-8787

tx.

parity.

type

This field specifies the type of Parity to use, when its use is enabled. Valid values are given in

the table below. The feature’s low level function is sio4_async_t_tx_parity_type().

Value Description

SIO4_ASYNC_TX_PARITY_TYPE_EVEN This specifies Even Parity. This is the default.

SIO4_ASYNC_TX_PARITY_TYPE_ODD This specifies Odd Parity.

SIO4_ASYNC_TX_PARITY_TYPE_ONE This specifies One Parity (the parity bit is

always set).

SIO4_ASYNC_TX_PARITY_TYPE_ZERO This specifies Zero Parity (the parity bit is

always clear).

tx.

fifo

This structure configures the transmitter’s FIFO parameters.

tx.

fifo.

size

This field is filled in by the sio4_async_init() call (section 3.1.3, page 9) with the size of

the channel’s Tx FIFO. This is offered for informational purposes only. The feature’s low level

function is sio4_async_t_tx_fifo_size().

tx.

fifo.

ae

This field specifies the Tx FIFO Almost Empty setting. The Tx FIFO Almost Empty status is

asserted (goes low) when the Tx FIFO contains this number of values, or fewer. The valid value

range is from zero to 0xFFFF. The default is 0x7. The feature’s low level function is

sio4_async_t_tx_fifo_ae().

tx.

fifo.

af

This field specifies the Tx FIFO Almost Full setting. The Tx FIFO Almost Full status is asserted

(goes low) when the Tx FIFO contains this number of free spaces, or fewer. The valid value

range is from zero to 0xFFFF. The default is 0x7. The feature’s low level function is

sio4_async_t_tx_fifo_af().

tx.

fifo.

empty_cfg

This field configures the transmitter’s reaction to the Tx FIFO becoming empty. Valid values are

given in the table below. The feature’s low level function is

sio4_async_t_tx_fifo_empty_cfg().

Value Description

SIO4_ASYNC_TX_FIFO_EMPTY_CFG_IGNORE This specifies that the condition is to

be ignored. This is the default.

SIO4_ASYNC_TX_FIFO_EMPTY_CFG_TX_OFF This specifies that the transmitter be

disabled when the condition occurs.

tx.

fifo.

space_cfg

This field configures the FIFO space allocation between the transmitter and the receiver when the

Tx FIFO and Rx FIFO are of different sizes. Valid values are given in the table below. The

feature’s low level function is sio4_async_t_tx_fifo_space_cfg().

Value Description

SIO4_ASYNC_TX_FIFO_SPACE_CFG_RX_2X This specifies that the Rx FIFO be twice

as large as the Tx FIFO. This is the

default.

SIO4_ASYNC_TX_FIFO_SPACE_CFG_TX_2X This specifies that the Tx FIFO be twice

as large as the Rx FIFO.

tx.

io

This structure configures the transmitter’s software settings. These settings are used during

sio4_async_write() calls (see section 3.1.11, page 12).

tx.

io.

mode

This field selects the mechanism used to transfer data from host memory to the channel’s Tx

FIFO. Valid values are given in the table below. The feature’s low level function is

sio4_async_t_tx_io_mode().

Value Description

SIO4_ASYNC_TX_IO_MODE_DMA This selects DMA mode transfers. *

SIO4_ASYNC_TX_IO_MODE_DMDMA This selects Demand Mode DMA mode transfers. *

SIO4_ASYNC_TX_IO_MODE_PIO This selects PIO mode transfers. This is the default.

* The SIO4 has only two DMA engines. A DMA or DMDMA transfer request will fail if both

DMA engines are already in use by other SIO4 channels.

tx. This field specifies the threshold for write request sizes that force the use of PIO mode. If a write

SIO4/8, Asynchronous Protocol Library, Reference Manual

24

General Standards Corporation, Phone: (256) 880-8787

io.

pio_thresh

request is this size or smaller, then the transfer will automatically use PIO. The valid range is any

non-negative value. The default is 64. The feature’s low level function is

sio4_async_t_tx_io_pio_thresh().

tx.

io.

timeout

This field specifies the maximum duration of write requests to the driver. The valid range is from

zero to 3600. The units are seconds. The default is 10 seconds. The value zero should be used

with PIO mode only as it tells the driver to write as much data as possible to the Tx FIFO, but not

to wait for additional free space. DMA and DMDMA requests always require a sleep to wait for

the hardware to complete the transfer. The feature’s low level function is

sio4_async_t_tx_io_timeout().

tx.

io.

overrun

This field tells the driver if it is to check for Tx FIFO overrun conditions before proceeding with

write requests. Valid values are given in the table below. The feature’s low level function is

sio4_async_t_tx_io_overrun().

Value Description

SIO4_ASYNC_TX_IO_OVERRUN_CHECK This specifies that the driver should check

for overrun conditions. This is the default.

SIO4_ASYNC_TX_IO_OVERRUN_IGNORE This specifies that the driver should not

check for overrun conditions.

3.3.1.4. sio4_async_t.rx

This section describes the structure’s receiver configuration fields.

Field Description

rx This structure configures the receiver portion of the channel.

rx.

mode

This field specifies the receiver’s operating mode. Valid values are given in the table below.

The feature’s low level function is sio4_async_t_rx_mode().

Value Description

SIO4_ASYNC_RX_MODE_ASYNC This selects the Asynchronous operating mode. This

is the default and the only valid option for this library.

rx.

enable

This field specifies if the receiver is to be enabled. When configuration is begun (see

sio4_async_set(), section 3.1.7, page 10) the receiver is initialized and disabled. The

option in this field is applied towards the end of the configuration process. Valid values are

given in the table below. The feature’s low level function is

sio4_async_t_rx_enable().

Value Description

SIO4_ASYNC_RX_ENABLE_NO_AFTER This disables the receiver after it has finished

the reception in progress.

SIO4_ASYNC_RX_ENABLE_NO_NOW This disables the receiver immediately.

SIO4_ASYNC_RX_ENABLE_YES_NOW This enables the receiver immediately. This is

the default.

SIO4_ASYNC_RX_ENABLE_YES_W_AE This enables the receiver according to the state

of any hardware flow control lines.

rx.

char_len

This field specifies the size of received characters. The length specified does not include the

Parity Bit, if Parity is enabled. The data bits are the lower significant bits of the byte. Valid

values are given in the table below. The feature’s low level function is

sio4_async_t_rx_char_len().

Value Description

SIO4_ASYNC_RX_CHAR_LEN_1 Characters are 1-bit in length.

SIO4_ASYNC_RX_CHAR_LEN_2 Characters are 2-bits in length.

SIO4_ASYNC_RX_CHAR_LEN_3 Characters are 3-bits in length.

SIO4_ASYNC_RX_CHAR_LEN_4 Characters are 4-bits in length.

SIO4/8, Asynchronous Protocol Library, Reference Manual

25

General Standards Corporation, Phone: (256) 880-8787

SIO4_ASYNC_RX_CHAR_LEN_5 Characters are 5-bits in length.

SIO4_ASYNC_RX_CHAR_LEN_6 Characters are 6-bits in length.

SIO4_ASYNC_RX_CHAR_LEN_7 Characters are 7-bits in length.

SIO4_ASYNC_RX_CHAR_LEN_8 Characters are 8-bits in length. This is the default.

rx.

encoding

This field specifies the encoding of the received data. Valid values are given in the table below.

The feature’s low level function is sio4_async_t_rx_encoding().

Value Description

SIO4_ASYNC_RX_ENCODING_BI_MARK This refers to Biphase Mark encoding.

SIO4_ASYNC_RX_ENCODING_BI_LEVEL This refers to Biphase Level encoding.

SIO4_ASYNC_RX_ENCODING_BI_SPACE This refers to Biphase Space encoding.

SIO4_ASYNC_RX_ENCODING_D_BI_LEVEL This refers to Differential Biphase Level

encoding.

SIO4_ASYNC_RX_ENCODING_NRZ This refers to NRZ encoding. This is the

default.

SIO4_ASYNC_RX_ENCODING_NRZB This refers to NRZB encoding.

SIO4_ASYNC_RX_ENCODING_NRZI_MARK This refers to NRZI-Mark encoding.

SIO4_ASYNC_RX_ENCODING_NRZI_SPACE This refers to NRZI-Space encoding.

rx.

bit_rate

This specifies the desired receive bit rate. During the sio4_async_init() call (section

3.1.3, page 9) this is set to the sio4_async_init_t.rx_bit_rate field provided to the

call. During the call, the library will automatically determine the USC configuration needed to

best produce the requested receive bit rate. Before returning, this field is set to the bit rate that

configuration will produce. The feature’s low level function is

sio4_async_t_rx_bit_rate().The Tx Bit Rate is used when the device is being

configured, but the value is not recorded for later retrieval.

rx.

sync_byte

This specifies the value to be compared to received data as the data enters the Rx FIFO (the one

outside the USC). This comparison can be used for interrupt generation. Valid values are from

zero to 0xFF. The default is zero. The feature’s low level function is

sio4_async_t_rx_sync_byte().

rx.

status_word

This field controls whether the firmware will place the USC Receive Control/Status Register in

the Rx FIFO along with the received data. Valid values are given in the table below. The

feature’s low level function is sio4_async_t_rx_status_word().

Value Description

SIO4_ASYNC_RX_STATUS_WORD_DISABLE The RCSR is not placed in the Rx FIFO.

This is the default.

SIO4_ASYNC_RX_STATUS_WORD_ENABLE The RCSR is placed in the Rx FIFO.

rx.

parity

This structure configures the receiver’s use of Parity checking.

rx.

parity.

enable

This field enables or disables the use of Parity. When enabled, the character size does not

include the Parity Bit. When used, the Parity Bit appears to the immediate left of the most

significant data bit. Valid values are given in the table below. The feature’s low level function

is sio4_async_t_rx_parity_enable().

Value Description

SIO4_ASYNC_RX_PARITY_ENABLE_NO Do not generate a Parity bit. This is the

default.

SIO4_ASYNC_RX_PARITY_ENABLE_YES Do generate a Parity bit.

rx.

parity.

type

This field specifies the type of Parity to use, when its use is enabled. Valid values are given in

the table below. The feature’s low level function is sio4_async_t_rx_parity_type().

Value Description

SIO4_ASYNC_RX_PARITY_TYPE_EVEN This specifies Even Parity. This is the

default.

SIO4/8, Asynchronous Protocol Library, Reference Manual

26

General Standards Corporation, Phone: (256) 880-8787

SIO4_ASYNC_RX_PARITY_TYPE_ODD This specifies Odd Parity.

SIO4_ASYNC_RX_PARITY_TYPE_ONE This specifies One Parity (the parity bit is

always set).

SIO4_ASYNC_RX_PARITY_TYPE_ZERO This specifies Zero Parity (the parity bit is

always clear).

rx.

fifo

This structure configures the receiver’s FIFO parameters.

rx.

fifo.

size

This field is filled in by the sio4_async_init() call (section 3.1.3, page 9) with the size

of the channel’s Rx FIFO. This is offered for informational purposes only. The feature’s low

level function is sio4_async_t_rx_fifo_size().

rx.

fifo.

ae

This field specifies the Rx FIFO Almost Empty setting. The Rx FIFO Almost Empty status is

asserted (goes low) when the Rx FIFO contain this number of values, or fewer. The valid value

range is from zero to 0xFFFF. The default is 0x7. The feature’s low level function is

sio4_async_t_rx_fifo_ae().

rx.

fifo.

af

This field specifies the Rx FIFO Almost Full setting. The Rx FIFO Almost Full status is

asserted (goes low) when the Rx FIFO contain this number of values, or fewer. The valid value

range is from zero to 0xFFFF. The default is 0x7. The feature’s low level function is

sio4_async_t_rx_fifo_af().

rx.

fifo.

full_cfg

This field configures the receiver’s reaction to the Rx FIFO becoming full. Valid values are

given in the table below. The feature’s low level function is

sio4_async_t_rx_fifo_full_cfg(). This field refers to the channel specific setting,

when supported. The corresponding global setting is not supported by the Asynchronous

Protocol Library because it affects channels other than the one being accessed. The global

setting must be handled separately by the application.

Value Description

SIO4_ASYNC_RX_FIFO_FULL_CFG_DISABLE This specifies that the receiver be

disabled when the condition occurs.

SIO4_ASYNC_RX_FIFO_FULL_CFG_OVER This specifies that the condition

produce an overflow. This is the

default.

rx.

io

This structure configures the receiver’s software settings. These settings are used during

sio4_async_read() calls (section 3.1.7, page 10).

rx.

io.

mode

This field selects the mechanism used to transfer data from the channel’s Rx FIFO to host

memory. Valid values are given in the table below. The feature’s low level function is

sio4_async_t_rx_io_mode().

Value Description

SIO4_ASYNC_RX_IO_MODE_DMA This selects DMA mode transfers. *

SIO4_ASYNC_RX_IO_MODE_DMDMA This selects Demand Mode DMA mode transfers.

*

SIO4_ASYNC_RX_IO_MODE_PIO This selects PIO mode transfers. This is the

default.

* The SIO4 has only two DMA engines. A DMA or DMDMA transfer request will fail if both

DMA engines are already in use by other SIO4 channels.

rx.

io.

pio_thresh

This field specifies the threshold for read request sizes that force the use of PIO mode. If a read

request is this size or smaller, then the transfer will automatically use PIO. The valid range is

any non-negative value. The default is 64. The feature’s low level function is

sio4_async_t_rx_io_pio_thresh().

rx.

io.

timeout

This field specifies the maximum duration of write requests. The valid range is from zero to

3600. The units are seconds. The default is 10 seconds. The value zero should be used with PIO

mode only as it tells the driver to read as much data as possible from the Rx FIFO, but not to

wait for additional data. DMA and DMDMA requests always require a sleep to wait for the

hardware to complete the transfer. The feature’s low level function is

sio4_async_t_rx_io_timeout().

SIO4/8, Asynchronous Protocol Library, Reference Manual

27

General Standards Corporation, Phone: (256) 880-8787

rx.

io.

overrun

This field tells the driver if it is to check for Rx FIFO overrun conditions before proceeding

with read requests. Valid values are given in the table below. The feature’s low level function is

sio4_async_t_rx_io_overrun().

Value Description

SIO4_ASYNC_RX_IO_OVERRUN_CHECK This specifies that the driver check for

overrun conditions. This is the default.

SIO4_ASYNC_RX_IO_OVERRUN_IGNORE This specifies that the driver not check for

overrun conditions.

rx.

io.

underrun

This field tells the driver if it is to check for Rx FIFO underrun conditions before proceeding

with read requests. Valid values are given in the table below. The feature’s low level function is

sio4_async_t_rx_io_underrun().

Value Description

SIO4_ASYNC_RX_IO_UNDERRUN_CHECK This specifies that the driver check for

underrun conditions. This is the default.

SIO4_ASYNC_RX_IO_UNDERRUN_IGNORE This specifies that the driver not check for

underrun conditions.

rx.

time_stamp

This structure configures the receiver’s Time Stamp settings.

rx.

time_stamp.

enable

This field enables or disables the channel’s use of the Time Stamp feature. Valid values are

given in the table below. The feature’s low level function is

sio4_async_t_rx_time_stamp_enable().

Value Description

SIO4_ASYNC_RX_TIME_STAMP_ENABLE_NO Do not use the Time Stamp feature.

This is the default.

SIO4_ASYNC_RX_TIME_STAMP_ENABLE_YES Do use the Time Stamp feature.

rx.

time_stamp.

clk_src

This field selects the Time Stamp clock source. Valid values are given in the table below. The

feature’s low level function is sio4_async_t_rx_time_stamp_clk_src().

Value Description

SIO4_ASYNC_RX_TIME_STAMP_CLK_SRC_EXT Use the board’s external TTL clock

source. *

SIO4_ASYNC_RX_TIME_STAMP_CLK_SRC_INT Use the board’s internal 1us clock.

This is the default. *

* All four channels on the SIO4 use the same clock source.

3.3.1.5. sio4_async_t.usc

This section describes the structure’s USC configuration fields.

Field Description

usc This structure configures the remaining USC portion of the channel.

usc.

mode

This field specifies the USC’s overall operating mode. Valid values are given in the table below.

The feature’s low level function is sio4_async_t_usc_mode().

Value Description

SIO4_ASYNC_USC_MODE_AUTO_ECHO This is the USC’s Auto Echo mode.

SIO4_ASYNC_USC_MODE_LOOPBACK_EXT This is the USC’s external loopback mode.

SIO4_ASYNC_USC_MODE_LOOPBACK_INT This is the USC’s internal loopback mode.

SIO4_ASYNC_USC_MODE_NORMAL This is the USC’s normal operating mode.

This is the default.

usc.

txd

This field configures the operation of the USC’s Tx Data pin. Valid values are given in the table

SIO4/8, Asynchronous Protocol Library, Reference Manual

28

General Standards Corporation, Phone: (256) 880-8787

below. The feature’s low level function is sio4_async_t_usc_txd().

Value Description

SIO4_ASYNC_USC_TXD_OUT_0 The pin is driven low.

SIO4_ASYNC_USC_TXD_OUT_1 The pin is driven high.

SIO4_ASYNC_USC_TXD_OUT_TXD The pin is driven from the transmitter’s Tx Data

signal. This is the default.

SIO4_ASYNC_USC_TXD_TRI The pin is tri-stated.

usc.

cts

This field configures the operation of the USC’s CTS pin. Valid values are given in the table

below. The feature’s low level function is sio4_async_t_usc_cts().

Value Description

SIO4_ASYNC_USC_CTS_OUT_0 The pin is driven low.

SIO4_ASYNC_USC_CTS_OUT_1 The pin is driven high.

SIO4_ASYNC_USC_CTS_IN_CBL_CTS The pin is an input driver from the cable’s CTS

signal.

SIO4_ASYNC_USC_CTS_TRI The pin is tri-stated. This is the default.

usc.

cts_legacy

This field configures the operation of the USC’s CTS pin for legacy mode cable interface

configurations. Valid values are given in the table below. The feature’s low level function is

sio4_async_t_usc_cts_legacy().

Value Description

SIO4_ASYNC_USC_TX_CTS_LEG_IN The pin operates as an input. This is the

default.

SIO4_ASYNC_USC_TX_CTS_LEG_OUT_0 The pin operates as an output driven low.

SIO4_ASYNC_USC_TX_CTS_LEG_OUT_1 The pin operates as an output driven high.

usc.

dcd

This field configures the operation of the USC’s DCD pin. Valid values are given in the table

below. The feature’s low level function is sio4_async_t_usc_dcd().

Value Description

SIO4_ASYNC_USC_DCD_DISABLE The pin is disabled. This is the default.

SIO4_ASYNC_USC_DCD_IN_DCD_CBL_DCD The pin is an input for the receiver’s

DCD function and is driven from the

cable’s DCD signal.

SIO4_ASYNC_USC_DCD_IN_SYNC_CBL_DCD The pin is an input for the receiver’s

SYNC function and is driven from the

cable’s DCD signal.

SIO4_ASYNC_USC_DCD_OUT_0 The pin is driven low. *

SIO4_ASYNC_USC_DCD_OUT_1 The pin is driven high. *

* This option enables the cable DCD signal to be driven, though the cable.dcd field (section

3.3.1.2, page 18) may configure the cable to output an alternate signal.

usc.

dcd_legacy

This field configures the operation of the USC’s DCD pin for legacy mode cable interface

configurations. Valid values are given in the table below. The feature’s low level function is

sio4_async_t_usc_dcd_legacy().

Value Description

SIO4_ASYNC_USC_DCD_LEG_IN_DCD The pin operates as a DCD input. This is the

default.

SIO4_ASYNC_USC_DCD_LEG_IN_SYNC The pin operates as a SYNC input.

SIO4_ASYNC_USC_DCD_LEG_OUT_0 The pin operates as an output driven low.

SIO4_ASYNC_USC_DCD_LEG_OUT_1 The pin operates as an output driven high.

usc.

tx

This structure configures the remaining USC transmitter settings.

usc.

tx.

This field configures the clock divider rate for the USC transmitter. This corresponds to the

oversampling rate used by the receiver. Valid values are given in the table below. The feature’s

SIO4/8, Asynchronous Protocol Library, Reference Manual

29

General Standards Corporation, Phone: (256) 880-8787

clk_rate low level function is sio4_async_t_usc_tx_clk_rate().

Value Description

SIO4_ASYNC_USC_TX_CLK_RATE_16X Divide the source by 16.

SIO4_ASYNC_USC_TX_CLK_RATE_32X Divide the source by 32.

SIO4_ASYNC_USC_TX_CLK_RATE_64X Divide the source by 64. *

* This is the hard coded initialization default, which may subsequently be modified as needed to

produce the user specified Tx bit rate.

usc.

tx.

clk_src

This field configures the source for the USC transmitter clock. Valid values are given in the table

below. The feature’s low level function is sio4_async_t_usc_tx_clk_src().

Value Description

SIO4_ASYNC_USC_TX_CLK_SRC_BRG0 Select Baud Rate Generator 0.

SIO4_ASYNC_USC_TX_CLK_SRC_BRG1 Select Baud Rate Generator 1.

SIO4_ASYNC_USC_TX_CLK_SRC_CTR0 Select Counter 0.

SIO4_ASYNC_USC_TX_CLK_SRC_CTR1 Select Counter 1.

SIO4_ASYNC_USC_TX_CLK_SRC_DISABLE Disable the transmitter.

SIO4_ASYNC_USC_TX_CLK_SRC_DPLL Select the DPLL.

SIO4_ASYNC_USC_TX_CLK_SRC_RXC_PIN Select the Rx Clock pin. *

SIO4_ASYNC_USC_TX_CLK_SRC_TXC_PIN Select the Tx Clock pin.

* This is the hard coded initialization default, which may subsequently be modified as needed to

produce the user specified Tx bit rate.

usc.

tx.

txc

This field configures the operation of the USC’s Tx Clock pin. Valid values are given in the table

below. The feature’s low level function is sio4_async_t_usc_tx_txc().

Value Description

SIO4_ASYNC_USC_TX_TXC_IN_0 The pin is an input driven low.

SIO4_ASYNC_USC_TX_TXC_IN_1 The pin is an input driven high.

SIO4_ASYNC_USC_TX_TXC_IN_CBL_RXAUX The pin is an input driven from the

cable’s Rx Aux signal.

SIO4_ASYNC_USC_TX_TXC_IN_CBL_RXC The pin is an input driven from the

cable’s Rx Clock signal.

SIO4_ASYNC_USC_TX_TXC_IN_OSC The pin is an input driven from the

onboard oscillator.

SIO4_ASYNC_USC_TX_TXC_IN_OSC_INV The pin is an input driven from the

inverted onboard oscillator.

SIO4_ASYNC_USC_TX_TXC_OUT_BRG0 The pin is an output driven from Baud

Rate Generator 0.

SIO4_ASYNC_USC_TX_TXC_OUT_BRG1 The pin is an output driven from Baud

Rate Generator 1.

SIO4_ASYNC_USC_TX_TXC_OUT_BYTE_CLK The pin is an output driven from the

transmitter’s Byte Clock.

SIO4_ASYNC_USC_TX_TXC_OUT_CLK The pin is an output driven from the

transmit clock. This is the default.

SIO4_ASYNC_USC_TX_TXC_OUT_COMP The pin is an output driven from the

transmit complete signal.

SIO4_ASYNC_USC_TX_TXC_OUT_CTR1 The pin is an output driven from

Counter 1.

SIO4_ASYNC_USC_TX_TXC_OUT_DPLL_TX The pin is an output driven from the

transmit clock from the DPLL.

usc.

tx.

txc_legacy

This field configures the operation of the USC’s Tx Clock pin for legacy mode cable interface

configurations. Valid values are given in the table below. The feature’s low level function is

sio4_async_t_usc_tx_txc_legacy().

Value Description

SIO4/8, Asynchronous Protocol Library, Reference Manual

30

General Standards Corporation, Phone: (256) 880-8787

SIO4_ASYNC_USC_TX_TXC_LEG_IN The pin operates as an input.

SIO4_ASYNC_USC_TX_TXC_LEG_OUT_BRG0 The pin is an output driven from

Baud Rate Generator 0.

SIO4_ASYNC_USC_TX_TXC_LEG_OUT_BRG1 The pin is an output driven from

Baud Rate Generator 1.

SIO4_ASYNC_USC_TX_TXC_LEG_OUT_BYTE_CLK The pin is an output driven from

the transmitter’s Byte Clock.

SIO4_ASYNC_USC_TX_TXC_LEG_OUT_CLK The pin is an output driven from

the transmit clock. This is the

default.

SIO4_ASYNC_USC_TX_TXC_LEG_OUT_COMP The pin is an output driven from

the transmit complete signal.

SIO4_ASYNC_USC_TX_TXC_LEG_OUT_CTR1 The pin is an output driven from

Counter 1.

SIO4_ASYNC_USC_TX_TXC_LEG_OUT_DPLL_TX The pin is an output driven from

the transmit clock from the DPLL.

usc.

tx.

stop_bits

This field configures the number of Stop Bits injected by the transmitter after each data byte.

Valid values are given in the table below. The feature’s low level function is

sio4_async_t_usc_tx_stop_bits().

Value Description

SIO4_ASYNC_USC_TX_STOP_BIT_1 This refers to a single stop bit. This is

the default.

SIO4_ASYNC_USC_TX_STOP_BIT_2 This refers to two stop bits.

SIO4_ASYNC_USC_TX_STOP_BIT_0__9_16 This refers to 9/16
th

 of a stop bit.

SIO4_ASYNC_USC_TX_STOP_BIT_0_10_16 This refers to 10/16
th

 of a stop bit (5/8
th

).

SIO4_ASYNC_USC_TX_STOP_BIT_0_11_16 This refers to 11/16
th

 of a stop bit.

SIO4_ASYNC_USC_TX_STOP_BIT_0_12_16 This refers to 12/16
th

 of a stop bit (3/4
th

).

SIO4_ASYNC_USC_TX_STOP_BIT_0_13_16 This refers to 13/16
th

 of a stop bit.

SIO4_ASYNC_USC_TX_STOP_BIT_0_14_16 This refers to 14/16
th

 of a stop bit (7/8
th

).

SIO4_ASYNC_USC_TX_STOP_BIT_0_15_16 This refers to 15/16
th

 of a stop bit.

SIO4_ASYNC_USC_TX_STOP_BIT_1__1_16 This refers to 1 and 1/16
th

 stop bits.

SIO4_ASYNC_USC_TX_STOP_BIT_1__2_16 This refers to 1 and 2/16
th

 stop bits

(1+1/8
th

).

SIO4_ASYNC_USC_TX_STOP_BIT_1__3_16 This refers to 1 and 3/16
th

 stop bits.

SIO4_ASYNC_USC_TX_STOP_BIT_1__4_16 This refers to 1 and 4/16
th

 stop bits

(1+1/4
th

).

SIO4_ASYNC_USC_TX_STOP_BIT_1__5_16 This refers to 1 and 5/16
th

 stop bits.

SIO4_ASYNC_USC_TX_STOP_BIT_1__6_16 This refers to 1 and 6/16
th

 stop bits

(1+3/8
th

).

SIO4_ASYNC_USC_TX_STOP_BIT_1__7_16 This refers to 1 and 7/16
th

 stop bits.

SIO4_ASYNC_USC_TX_STOP_BIT_1__8_16 This refers to 1 and 8/16
th

 stop bits

(1+1/2).

SIO4_ASYNC_USC_TX_STOP_BIT_1__9_16 This refers to 1 and 9/16
th

 stop bits.

SIO4_ASYNC_USC_TX_STOP_BIT_1_10_16 This refers to 1 and 10/16
th

 stop bits

(1+5/8
th

).

SIO4_ASYNC_USC_TX_STOP_BIT_1_11_16 This refers to 1 and 11/16
th

 stop bits.

SIO4_ASYNC_USC_TX_STOP_BIT_1_12_16 This refers to 1 and 12/16
th

 stop bits

(1+3/4
th

).

SIO4_ASYNC_USC_TX_STOP_BIT_1_13_16 This refers to 1 and 13/16
th

 stop bits.

SIO4_ASYNC_USC_TX_STOP_BIT_1_14_16 This refers to 1 and 14/16
th

 stop bits

(1+7/8
th

).

SIO4_ASYNC_USC_TX_STOP_BIT_1_15_16 This refers to 1 and 15/16
th

 stop bits.

usc. This structure configures the remaining USC receiver settings.

SIO4/8, Asynchronous Protocol Library, Reference Manual

31

General Standards Corporation, Phone: (256) 880-8787

rx

usc.

rx.

clk_rate

This field configures the clock divider rate for the USC receiver. This is the receiver

oversampling rate. Valid values are given in the table below. The feature’s low level function is

sio4_async_t_usc_rx_clk_rate().

Value Description

SIO4_ASYNC_USC_RX_CLK_RATE_16X Divide the source by 16.

SIO4_ASYNC_USC_RX_CLK_RATE_32X Divide the source by 32.

SIO4_ASYNC_USC_RX_CLK_RATE_64X Divide the source by 64. *

* This is the hard coded initialization default, which may subsequently be modified as needed to

produce the user specified Rx bit rate.

usc.

rx.

clk_src

This field configures the source for the USC receiver clock. Valid values are given in the table

below. The feature’s low level function is sio4_async_t_usc_rx_clk_src().

Value Description

SIO4_ASYNC_USC_RX_CLK_SRC_BRG0 Select Baud Rate Generator 0.

SIO4_ASYNC_USC_RX_CLK_SRC_BRG1 Select Baud Rate Generator 1.

SIO4_ASYNC_USC_RX_CLK_SRC_CTR0 Select Counter 0.

SIO4_ASYNC_USC_RX_CLK_SRC_CTR1 Select Counter 1.

SIO4_ASYNC_USC_RX_CLK_SRC_DISABLE Disable the receiver.

SIO4_ASYNC_USC_RX_CLK_SRC_DPLL Select the DPLL.

SIO4_ASYNC_USC_RX_CLK_SRC_RXC_PIN Select the Rx Clock pin. *

SIO4_ASYNC_USC_RX_CLK_SRC_TXC_PIN Select the Tx Clock pin.

* This is the hard coded initialization default, which may subsequently be modified as needed to

produce the user specified Rx bit rate.

usc.

rx.

rxc

This field configures the operation of the USC’s Rx Clock pin. Valid values are given in the table

below. The feature’s low level function is sio4_async_t_usc_rx_rxc().

Value Description

SIO4_ASYNC_USC_RX_RXC_IN_0 The pin is an input driven low.

SIO4_ASYNC_USC_RX_RXC_IN_1 The pin is an input driven high.

SIO4_ASYNC_USC_RX_RXC_IN_CBL_RXAUX The pin is an input driven from the

cable’s Rx Aux signal.

SIO4_ASYNC_USC_RX_RXC_IN_CBL_RXC The pin is an input driven from the

cable’s Rx Clock signal. This is the

default.

SIO4_ASYNC_USC_RX_RXC_IN_OSC The pin is an input driven from the

onboard oscillator.

SIO4_ASYNC_USC_RX_RXC_IN_OSC_INV The pin is an input driven from the

inverted onboard oscillator.

SIO4_ASYNC_USC_RX_RXC_OUT_BRG0 The pin is an output driven from Baud

Rate Generator 0.

SIO4_ASYNC_USC_RX_RXC_OUT_BRG1 The pin is an output driven from Baud

Rate Generator 1.

SIO4_ASYNC_USC_RX_RXC_OUT_BYTE_CLK The pin is an output driven from the

receiver’s Byte Clock.

SIO4_ASYNC_USC_RX_RXC_OUT_CLK The pin is an output driven from the

receiver clock.

SIO4_ASYNC_USC_RX_RXC_OUT_CTR0 The pin is an output driven from

Counter 0.

SIO4_ASYNC_USC_RX_RXC_OUT_DPLL_RX The pin is an output driven from the

DPLL receiver clock.

SIO4_ASYNC_USC_RX_RXC_OUT_SYNC The pin is an output driven from the

receiver’s SYNC signal.

usc. This field configures the operation of the USC’s Rx Clock pin for legacy mode cable interface

SIO4/8, Asynchronous Protocol Library, Reference Manual

32

General Standards Corporation, Phone: (256) 880-8787

rx.

rxc_legacy

configurations. Valid values are given in the table below. The feature’s low level function is

sio4_async_t_usc_rx_rxc_legacy().

Value Description

SIO4_ASYNC_USC_RX_RXC_LEG_IN The pin is an input. This is the

default.

SIO4_ASYNC_USC_RX_RXC_LEG_OUT_BRG0 The pin is an output driven from

Baud Rate Generator 0.

SIO4_ASYNC_USC_RX_RXC_LEG_OUT_BRG1 The pin is an output driven from

Baud Rate Generator 1.

SIO4_ASYNC_USC_RX_RXC_LEG_OUT_BYTE_CLK The pin is an output driven from

the receiver’s Byte Clock.

SIO4_ASYNC_USC_RX_RXC_LEG_OUT_CLK The pin is an output driven from

the receiver clock.

SIO4_ASYNC_USC_RX_RXC_LEG_OUT_CTR0 The pin is an output driven from

Counter 0.

SIO4_ASYNC_USC_RX_RXC_LEG_OUT_DPLL_RX The pin is an output driven from

the DPLL receiver clock.

SIO4_ASYNC_USC_RX_RXC_LEG_OUT_SYNC The pin is an output driven from

the receiver’s SYNC signal.

usc.

brg0

This structure configures settings for Baud Rate Generator 0 (BRG0).

usc.

brg0.

enable

This field enables or disabled Baud Rate Generator 0. Valid values are given in the table below.

The feature’s low level function is sio4_async_t_usc_brg0_enable().

Value Description

SIO4_ASYNC_USC_BRG0_ENABLE_NO This disables BRG0.*

SIO4_ASYNC_USC_BRG0_ENABLE_YES This enables BRG0.

* This is the hard coded initialization default, which may subsequently be modified as needed to

produce the user specified Tx bit rate.

usc.

brg0.

clk_src

This field selects the clock source for Baud Rate Generator 0. Valid values are given in the table

below. The feature’s low level function is sio4_async_t_usc_brg0_clk_src().

Value Description

SIO4_ASYNC_USC_BRG0_CLK_SRC_CTR0 This selects the Counter 0 output. *

SIO4_ASYNC_USC_BRG0_CLK_SRC_CTR1 This selects the Counter 1 output.

SIO4_ASYNC_USC_BRG0_CLK_SRC_RXC_PIN This selects the signal present at the

USC’s Rx Clock pin.

SIO4_ASYNC_USC_BRG0_CLK_SRC_TXC_PIN This selects the signal present at the

USC’s Tx Clock pin.

* This is the hard coded initialization default, which may subsequently be modified as needed to

produce the user specified Tx bit rate.

usc.

brg0.

divider

This field specifies the clock divider value for Baud Rate Generator 0. The valid value range is

from zero to 0xFFFF. The hard coded initialization default is zero, which may subsequently be

modified as needed to produce the user specified Tx bit rate. The feature’s low level function is

sio4_async_t_usc_brg0_divider().

usc.

brg0.

mode

This field specifies the Baud Rate Generator 0 operating mode. Valid values are given in the

table below. The feature’s low level function is sio4_async_t_usc_brg0_mode().

Value Description

SIO4_ASYNC_USC_BRG0_MODE_CONT This selects continuous operation. This is the

default.

SIO4_ASYNC_USC_BRG0_MODE_SINGLE This selects single shot mode, in which

clocking stops when the counter value

reaches zero.

SIO4/8, Asynchronous Protocol Library, Reference Manual

33

General Standards Corporation, Phone: (256) 880-8787

usc.

brg1

This structure configures settings for Baud Rate Generator 1 (BRG1).

usc.

brg1.

enable

This field enables or disabled Baud Rate Generator 1. Valid values are given in the table below.

The feature’s low level function is sio4_async_t_usc_brg1_enable().

Value Description

SIO4_ASYNC_USC_BRG1_ENABLE_NO This disables BRG1. *

SIO4_ASYNC_USC_BRG1_ENABLE_YES This enables BRG1.

* This is the hard coded initialization default, which may subsequently be modified as needed to

produce the user specified Rx bit rate.

usc.

brg1.

clk_src

This field selects the clock source for Baud Rate Generator 1. Valid values are given in the table

below. The feature’s low level function is sio4_async_t_usc_brg1_clk_src().

Value Description

SIO4_ASYNC_USC_BRG1_CLK_SRC_CTR0 This selects the output from Counter 0.

SIO4_ASYNC_USC_BRG1_CLK_SRC_CTR1 This selects the output from Counter 1.

This is the default.

SIO4_ASYNC_USC_BRG1_CLK_SRC_RXC_PIN This selects the signal present at the

USC’s Rx Clock pin.

SIO4_ASYNC_USC_BRG1_CLK_SRC_TXC_PIN This selects the signal present at the

USC’s Tx Clock pin.

usc.

brg1.

divider

This field specifies the clock divider value for Baud Rate Generator 1. The valid value range is

from zero to 0xFFFF. The hard coded initialization default is zero, which may subsequently be

modified as needed to produce the user specified Rx bit rate. The feature’s low level function is

sio4_async_t_usc_brg1_divider().

usc.

brg1.

mode

This field specifies the Baud Rate Generator 1 operating mode. Valid values are given in the

table below. The feature’s low level function is sio4_async_t_usc_brg1_mode().

Value Description

SIO4_ASYNC_USC_BRG1_MODE_CONT This selects continuous operation. This is the

default.

SIO4_ASYNC_USC_BRG1_MODE_SINGLE This selects single shot mode, in which

clocking stops when the counter value

reaches zero.

usc.

ctr0

This structure configures settings for Counter 0 (CTR0).

usc.

ctr0.

clk_src

This field selects the clock source for Counter 0. Valid values are given in the table below. The

feature’s low level function is sio4_async_t_usc_ctr0_clk_src().

Value Description

SIO4_ASYNC_USC_CTR0_CLK_SRC_DISABLE This disables Counter 0. *

SIO4_ASYNC_USC_CTR0_CLK_SRC_RXC_PIN This selects the signal present at the

USC’s Rx Clock pin.

SIO4_ASYNC_USC_CTR0_CLK_SRC_TXC_PIN This selects the signal present at the

USC’s Tx Clock pin.

* This is the hard coded initialization default, which may subsequently be modified as needed to

produce the user specified Tx bit rate.

usc.

ctr0.

rate

This field selects the divider rate for Counter 0. Valid values are given in the table below. The

feature’s low level function is sio4_async_t_usc_ctr0_rate().

Value Description

SIO4_ASYNC_USC_CTR0_RATE_4X This sets the output as the input divided by four.

SIO4_ASYNC_USC_CTR0_RATE_8X This sets the output as the input divided by eight.

SIO4_ASYNC_USC_CTR0_RATE_16X This sets the output as the input divided by 16.

SIO4_ASYNC_USC_CTR0_RATE_32X This sets the output as the input divided by 32. *

SIO4/8, Asynchronous Protocol Library, Reference Manual

34

General Standards Corporation, Phone: (256) 880-8787

* This is the hard coded initialization default, which may subsequently be modified as needed to

produce the user specified Tx bit rate.

usc.

ctr1

This structure configures settings for Counter 1 (CTR1).

usc.

ctr1.

clk_src

This field selects the clock source for Counter 1. Valid values are given in the table below. The

feature’s low level function is sio4_async_t_usc_ctr1_clk_src().

Value Description

SIO4_ASYNC_USC_CTR1_CLK_SRC_DISABLE This disables Counter 1. *

SIO4_ASYNC_USC_CTR1_CLK_SRC_RXC_PIN This selects the signal present at the

USC’s Rx Clock pin.

SIO4_ASYNC_USC_CTR1_CLK_SRC_TXC_PIN This selects the signal present at the

USC’s Tx Clock pin.

* This is the hard coded initialization default, which may subsequently be modified as needed to

produce the user specified Rx bit rate.

usc.

ctr1.

rate_src

This field selects the source for the rate divider used by Counter 1. Valid values are given in the

table below. The feature’s low level function is sio4_async_t_usc_ctr1_rate_src().

Value Description

SIO4_ASYNC_USC_CTR1_RATE_SRC_CTR0 This selects the rate divider used by

CTR0.

SIO4_ASYNC_USC_CTR1_RATE_SRC_DPLL This selects the rate divider used by the

DPLL. This is the default.

usc.

dpll

This structure configures settings for DPLL. The DPLL is unused by the Asynchronous Protocol

Library except for the one field described below.

usc.

dpll.

rate

This field selects the divider rate for the DPLL, which is used as the divider rate for Counter 1

(CTR1). Valid values are given in the table below. The feature’s low level function is

sio4_async_t_usc_dpll_rate().

Value Description

SIO4_ASYNC_USC_DPLL_RATE_4X This sets the output as the input divided by four.

This option is usable only when the DPLL divider

rate is being used as the divider rate for CTR1.

SIO4_ASYNC_USC_DPLL_RATE_8X This sets the output as the input divided by eight.

SIO4_ASYNC_USC_DPLL_RATE_16X This sets the output as the input divided by 16.

SIO4_ASYNC_USC_DPLL_RATE_32X This sets the output as the input divided by 32. *

* This is the hard coded initialization default, which may subsequently be modified as needed to

produce the user specified Rx bit rate.

SIO4/8, Asynchronous Protocol Library, Reference Manual

35

General Standards Corporation, Phone: (256) 880-8787

4. Operation

This section is intended to provide limited information on the operation of the board and/or the Asynchronous

Protocol Library.

4.1. Basic Illustration

The below figure is included to assist individuals in the configuration of the SIO4. The figure illustrates boards with

more recent firmware. The DMA references are handled automatically by the driver to facilitate movement of data

between the USC and the on-board FIFOs.

Tx FIFO
Oscillator Inv

RxClk
0
1

TxClk

0
1

CTS

DCD

RTS0
1

AF

DCD
0
1

AuxC
0
1

TxD0
1

TxD

RxD

RxD

RxC

TxC

0
1

Rx

Tx

CTS

HiZ

HiZ

HiZ

Rx FIFO

CTR0

CTR1

TxC

RxC

Disable

BRG1

BRG0

DPLL

T
x
C

lk
R

x
C

lk

Dis

Tx

Rx

32/16/8/4

CTR0/DPLL

32/16/8(/4)

CTS

Tx
CTS

Rx
DCDDCD

D/S

TxDTxD

HiZ
TxCC TxC

RxCC RxS

USC

RxDRxD

Data

Data

0
1

0
1

TxRMode TxAMode

(DMA)

RxRMode RxAMode

(DMA)

Cable

DCE/DTE/

Legacy

Transceivers

Loopback Int/Ext

Disable
SC/Cont

SC/Cont

En/Disable

En/Disable

Disable

H/L/B/N

0
1

Auto Echo

Dis

SIO4B and later

Enable/Disable

Enable/Disable

DTR/

DST0
1

HiZ

RTS

RTS

Figure 2 A functional illustration of an SIO4B or later model board.

4.2. Clocking Configurations

The Asynchronous serial protocol requires an Rx Clock signal for data reception. This limits the clocking

configuration options when using the SIO4 for full duplex data transfer. The SIO4 receiver clocks in data from the

cable’s Tx Data signal using the cable’s Rx Clock signal. In this case both signals are routed directly from the cable

interface to the USC. The SIO4 transmitter clocks out data to the cable’s Tx Data signal using the clock driven on

the cable’s Tx Clock signal. In this case the origin of the cable’s Tx Clock signal and the USC’s transmit clock is the

SIO4’s programmable oscillator, which is programmed to the desired Tx bit rate. The Tx Data is routed directly

from the USC to the cable interface. Clock and data signal routing for SIO4B and later model boards is illustrated in

Figure 3. This signal routing pictured is the configuration produced by the sio4_async_init() function, which

initializes the sio4_async_t structure given as an argument.

NOTE: On SIO4A model boards, full duplex operation requires either that the driver be updated

to support programming of the SIO4A’s programmable oscillator or an alternate signal routing

configuration which may require an Rx Clock cable signal that is active full time.

SIO4/8, Asynchronous Protocol Library, Reference Manual

36

General Standards Corporation, Phone: (256) 880-8787

NOTE: On SIO4 model boards (with no ‘A’ or ‘B’ suffix) full duplex operation requires either

that the board’s fixed frequency oscillator be replaced to match the desired transmit bit rate or an

alternate signal routing configuration which may require an Rx Clock cable signal that is active

full time.

The below code sample illustrates the minimum required steps to configure an SIO4 for Asynchronous operation.

Error checking is omitted for brevity.

void config_sample(int fd)

{

 const char* err = NULL;

 sio4_async_init_t init;

 sio4_async_t async;

 init.tx_bit_rate = 1000000L;

 init.rx_bit_rate = 1000000L;

 sio4_async_init(fd, &init, &async, &err);

 sio4_async_set(fd, &async, &err);

}

Tx FIFO
Oscillator Inv

RxClk
0
1

TxClk

0
1

CTS

DCD

RTS0
1

AF

DCD
0
1

AuxC
0
1

TxD0
1

TxD

RxD

RxD

RxC

TxC

0
1

Rx

Tx

CTS

HiZ

HiZ

HiZ

Rx FIFO

CTR0

CTR1

TxC

RxC

Disable

BRG1

BRG0

DPLL

T
x
C

lk
R

x
C

lk

Dis

Tx

Rx

32/16/8/4

CTR0/DPLL

32/16/8(/4)

CTS

Tx
CTS

Rx
DCDDCD

D/S

TxDTxD

HiZ
TxCC TxC

RxCC RxS

USC

RxDRxD

Data

Data

0
1

0
1

TxRMode TxAMode

(DMA)

RxRMode RxAMode

(DMA)

Cable

DCE/DTE/

Legacy

Transceivers

Loopback Int/Ext

Disable
SC/Cont

SC/Cont

En/Disable

En/Disable

Disable

H/L/B/N

0
1

Auto Echo

Dis

SIO4B and later

Enable/Disable

Enable/Disable

DTR/

DST0
1

HiZ

RTS

RTS

Figure 3 This illustrates the default Asynchronous clock routing on SIO4B and later model boards.

4.3. Error and Status Detection

The serial controller used on the SIO4 incorporates the ability to detect a number of error and other conditions for

both the transmit and the receive data streams.

SIO4/8, Asynchronous Protocol Library, Reference Manual

37

General Standards Corporation, Phone: (256) 880-8787

4.3.1. Interrupt Events

The most efficient means of detecting the various conditions, especially errors, is by use of interrupts. The basic

steps for this are to enable the interrupts of interest then have a thread wait for a corresponding interrupt event. (See

the Interrupt and the Wait Event services in the driver reference manual.) This is illustrated in the following code

fragments.

Thread A Thread B

For (;;)

{

 …

 read SIO4 data

 if (error recorded)

 {

 Error exists in

1) Read buffer, or
2) SIO4 Rx FIFO
Resync data stream.

 }

 else

 {

 Read buffer is error free.

 }

 …

}

For (;;)

{

 …

 Enable desired interrupts.

 Wait for an interrupt.

 if (error interrupt occurred)

 {

 Record the error.

 }

 …

}

4.3.2. Rx Status Word

The SIO4 can also provide status in the Rx data stream on a per byte basis. This is done by enabling the Rx Status

Word feature (sio4_async_t.rx.status_word, section 3.3.1.4, page 24). When enabled, the SIO4 places

the lower eight bits of the USC’s Receive Command/Status Register in the Rx FIFO immediately after the data

itself. This allows an application to identity the precise location in the data stream where some Rx related conditions

occurr. The downside of this is that it doubles the volume of data going through the Rx FIFO and effectively reduces

its size by 1/2. Refer to the Z16C30 Data Handbook for information on the USC’s Receive Command/Status

Register.

4.4. Debugging Aids

The SIO4 driver archive includes two debugging aids appropriate for use with the Asynchronous Protocol Library.

The aids are described below.

4.4.1. sio4_async_show()

The function sio4_async_show() (section 3.1.9, page 11) is part of the protocol library interface. The purpose

of the function is to produce a human readable report of all fields included in the sio4_async_t structure

(section 3.3.1, page 14) passed in as a function argument. The function is best used to report the structure’s content

before it is passed to sio4_async_set() (section 3.1.7, page 10) or after it is passed to sio4_async_get()

(section 3.1.2, page 8). The output can be used with Figure 2 to help visualize the channel configuration reflected by

the structure content. When used in conjunction with sio4_async_set(), the sio4_async_show() output

indicates the state that sio4_async_set() is expected to produce. When used in conjunction with

sio4_async_get(), the sio4_async_show() output indicates the channel’s current state. This may be

beneficial after calling sio4_async_set() in order to verify the results achieved. The pair of calls may also be

used before or after read() or write() calls in order to help explain the results of individual transfer requests.

SIO4/8, Asynchronous Protocol Library, Reference Manual

38

General Standards Corporation, Phone: (256) 880-8787

4.4.2. sio4_reg_list()

The function sio4_reg_list() is included in the SIO4 utility library. The purpose of the function is to report

the current content of registers for the referenced serial channel. The arguments control the set of registers included

in the output and the detail with which the register content is reported. This function can be called at any time to

report the device state, but it is most often called after completing board setup, or just before or after

sio4_async_read() or sio4_async_write() calls in order to help explain the results of individual

transfer requests.

Prototype

int sio4_reg_list(int fd, int gsc, int gsc_detail,

 int usc, int usc_detail);

Argument Description

fd This is a file descriptor obtained by calling sio4_async_open() (section 3.1.6,

page 10).

gsc If non-zero, then the output will include a dump of all GSC_SIO4_xxx registers. Refer

to sio4.h for a complete list of these registers.

gsc_detail If non-zero, then the dump of the GSC registers will include detailed information about

all register fields, including the field value and the meaning of the value.

usc If non-zero, then the output will include a dump of all GSC_USC_xxx registers. Refer

to sio4_usc.h for a complete list of these registers.

usc_detail If non-zero, then the dump of the USC registers will include detailed information about

all register fields, including the field value and the meaning of the value.

Return Value Description

>= 0 This is the number of errors encountered during execution of the function.

4.5. Exclusions

4.5.1. Global Rx FIFO Full Configuration

The global Rx FIFO Full Configuration setting (see SIO4_IOCTL_RX_FIFO_FULL_CFG_GLB in sio4.h) is

not included as part of the Asynchronous Protocol Library. It is excluded because the setting can override the

channel specific settings for all four channels. If an application is to access this feature it must be done in parallel

with use of the Asynchronous Protocol Library.

SIO4/8, Asynchronous Protocol Library, Reference Manual

39

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

September 7, 2015 Updated to release version 1.1.

December 9, 2014 Initial library release, version 1.0.

