

SIO4/8
Four/Eight Channel High Speed Serial I/O

All SIO4 and SIO8 Models
All Form Factors

All Standard Zilog Versions

HDLC Protocol Library
Reference Manual

Manual Revision: September 7, 2015

Library Release Version: 0.9

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

SIO4/8, HDLC Protocol Library, Reference Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2013-2015, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com/

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this material, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose. Although extensive editing

and reviews are performed before release to ECO control, General Standards Corporation assumes no

responsibility for any errors that may exist in this document. No commitment is made to update or keep current the

information contained in this document.

General Standards Corporation does not assume any liability arising out of the application or use of any product

or circuit described herein, nor is any license conveyed under any patent rights or any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this product to improve

reliability, performance, function, or design.

ALL RIGHTS RESERVED.

The Purchaser of this software may use or modify in source form the subject software, but not to re-market or

distribute it to outside agencies or separate internal company divisions. The software, however, may be embedded in

the Purchaser’s distributed software. In the event the Purchaser’s customers require the software source code, then

they would have to purchase their own copy of the software.

General Standards Corporation makes no warranty of any kind with regard to this software, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose and makes this software

available solely on an “as-is” basis. General Standards Corporation reserves the right to make changes in this

software without reservation and without notification to its users.

The information in this document is subject to change without notice. This document may be copied or reproduced

provided it is in support of products from General Standards Corporation. For any other use, no part of this

document may be copied or reproduced in any form or by any means without prior written consent of General

Standards Corporation.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

Zilog and Z16C30 are trademarks of Zilog, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

SIO4/8, HDLC Protocol Library, Reference Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 6

1.1. Purpose .. 6

1.2. Acronyms ... 6

1.3. Definitions .. 6

1.4. Software Overview .. 6

1.5. Hardware Overview .. 6

1.6. Reference Material .. 7

2. The HDLC Serial Protocol ... 8

2.1. Description ... 8

2.2. History.. 8

3. Functions .. 10

3.1. High Level Functions .. 10
3.1.1. sio4_hdlc_lib_init() .. 10
3.1.2. sio4_hdlc_version() .. 10
3.1.3. sio4_hdlc_open() .. 10
3.1.4. sio4_hdlc_close() .. 11
3.1.5. sio4_hdlc_ioctl() ... 11
3.1.6. sio4_hdlc_init()... 11
3.1.7. sio4_hdlc_get() ... 12
3.1.8. sio4_hdlc_set() ... 13
3.1.9. sio4_hdlc_show() ... 13
3.1.10. sio4_hdlc_rx_flush() ... 14
3.1.11. sio4_hdlc_rx_frame() ... 14
3.1.12. sio4_hdlc_tx_abort() ... 16
3.1.13. sio4_hdlc_tx_flush() ... 16
3.1.14. sio4_hdlc_tx_frame().. 17
3.1.15. sio4_hdlc_tx_wait() .. 19

3.2. Low Level Functions ... 19

3.3. Data Structures ... 20
3.3.1. sio4_hdlc_t ... 20

4. Operation ... 45

4.1. Basic Illustration ... 45

4.2. Clocking Configurations... 45
4.2.1. Tx Bit Rate == Rx Bit Rate, Cable Rx Clock Used .. 46
4.2.2. Tx Bit Rate != Rx Bit Rate, Cable Rx Clock Used ... 47
4.2.3. Cable Rx Clock Not Used .. 48

4.3. Error and Status Detection .. 49
4.3.1. Interrupt Events .. 49
4.3.2. Rx Status Word... 49

4.4. Debugging Aids ... 49
4.4.1. sio4_hdlc_show() ... 49

SIO4/8, HDLC Protocol Library, Reference Manual

4

General Standards Corporation, Phone: (256) 880-8787

4.4.2. sio4_reg_list() ... 50

4.5. Exclusions .. 50
4.5.1. Global Rx FIFO Full Configuration ... 50

Document History ... 51

SIO4/8, HDLC Protocol Library, Reference Manual

5

General Standards Corporation, Phone: (256) 880-8787

Table of Figures

Figure 1 The HDLC Frame format. ... 8

Figure 2 A functional illustration of an SIO4B or later model board. (See sio4_zilog.pdf.) 45

Figure 3 This illustrates the clock routing produced when the receiver gets its clock from the cable’s Rx Clock

signal, and when the receiver and the transmitter use the same bit rate. In this case the transmitter clock appears

at the cable’s Tx Clock signal. ... 46

Figure 4 This illustrates the clock routing produced when the receiver gets its clock from the cable’s Rx Clock

signal, but when the receiver and the transmitter use different bit rates. In this case the oscillator output, which

can be programmed to the Tx bit rate, appears at the cable interface as the Tx Clock signal.............................. 47

Figure 5 This illustrates the clock routing produced when the receiver derives its clock from the DPLL, and when

the receiver and the transmitter use different bit rates. In this case the transmitter clock appears at the cable’s

Tx Clock signal. ... 48

SIO4/8, HDLC Protocol Library, Reference Manual

6

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

This document provides information on the HDLC Protocol Library, which is a library designed to facilitate use of

the HDLC serial protocol with an SIO4 or SIO8. This library version is designed to work with the 2.x series driver

released on the same day as this version of the library.

1.1. Purpose

The purpose of this document is twofold. First, it is intended to give a basic description the HDLC framing

architecture. Second, it is intended to give a complete description of the HDLC Protocol Library interface.

1.2. Acronyms

The following is a list of commonly occurring acronyms used throughout this document.

Acronyms Description

DMA Direct Memory Access

DPLL Digital Phase Lock Loop

GSC General Standards Corporation

HDLC High-level Data Link Control

PCI Peripheral Component Interconnect

PMC PCI Mezzanine Card

USC Universal Serial Controller

1.3. Definitions

The following is a list of commonly occurring terms used throughout this document.

Term Definition

Application Application means the user mode process, which runs in the user space with user mode privileges.

Driver Driver means the executable programming providing the direct access to the SIO4 hardware.

SIO4 This is used as a general reference to any Zilog based board supported by this driver. This includes

both SIO4 and SIO8 model boards.

1.4. Software Overview

The HDLC Protocol Library is a statically linked library providing an HDLC centric interface to the SIO4 device

driver. The library is provided in source form and must be built before being used. The library is a thin software

layer that sits between an SIO4 application and the SIO4 device driver. The interface provided by the library is

HDLC specific and is a simplified rendition of the IOCTL services that are part of the overall driver interface. The

library exists in parallel with the driver interface. Applications are free to use the library interface and the driver

interface at will. The only requirements are that applications must use the library’s sio4_hdlc_lib_init(),

sio4_hdlc_open() and sio4_hdlc_close() functions.

1.5. Hardware Overview

NOTE: The SIO8 boards appear to the system as two SIO4 boards.

The SIO4 is a four channel high-speed serial interface I/O board. This board provides for bi-directional serial data

transfers between the SIO4 and remote devices. The SIO4 board includes two DMA controllers and comes with a

maximum of 256K Bytes of FIFO storage, which is 32K per channel per direction (32K * 2 * 4). The FIFO

configuration can vary greatly from one SIO4 version to another (i.e. 32K * 2 * 4 to 512 * 2 * 2 to none at all). The

SIO4 can be configured with a number of different cable transceivers. The transceivers can be fixed as RS232 or

SIO4/8, HDLC Protocol Library, Reference Manual

7

General Standards Corporation, Phone: (256) 880-8787

RS422, or they can be changed programmatically to a number of different options. The Zilog version of the SIO4

supports a number of different serial protocols by use of a pair of dual Universal Serial Controllers (the Zilog

Z16C30). This includes Asynchronous, Monosync, Bisync, HDLC and a few others.

1.6. Reference Material

The following reference material may be of particular benefit in using the SIO4 and this driver. The specifications

provide the information necessary for an in depth understanding of the specialized features implemented on this

board.

 ISO/IEC 13239, Information technology – Telecommunications and information exchange between

systems – High-level data link control (HDLC) procedures

 The applicable SIO4/SIO8 User Manual from General Standards Corporation.

 The applicable SIO4/SIO8 Driver User Manual from General Standards Corporation.

 The PCI Bus Master Interface Chip data handbook for the PCI9056 or PCI9080 from PLX

Technology, Inc.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com/

 The Z16C30 USC User’s Manual from Zilog.

Zilog, Inc.

910 E Hamilton Ave

Campbell, California 95008 USA

Phone: 1-408-558-8500

WEB: Thttp://www.zilog.com/

http://www.plxtech.com/
http://www.zilog.com/

SIO4/8, HDLC Protocol Library, Reference Manual

8

General Standards Corporation, Phone: (256) 880-8787

2. The HDLC Serial Protocol

2.1. Description

HDLC is a bit oriented serial transmission protocol centered about what is called the Flag. The Flag is a series of

eight bits whose values are 01111110. The Flag is used to signal the beginning and end of a Frame. Refer to Figure

1 below for the basic layout of an HDLC Frame. The only other special bit sequences are the Aborts. The normal

Abort is a zero followed by seven ones. The Extended Abort is a zero followed by 15 ones. When sending out other

than these special sequences, the transmitter performs bit stuffing by converting any 011111 sequence into 0111101.

The receiver performs the reverse operation by converting the sequence 0111101 to 011111. In this way, the HDLC

protocol places no restriction on the content of the serial data.

Flag
Data

(Optional)
ControlAddress FCS Flag

8 bits x bits8+8x bits8+8x bits 8/16/32 bits 8 bits

Figure 1 The HDLC Frame format.

Within a Frame, everything but the data is always in multiples of eight bits. The Flags are always eight bits wide.

All Address characters, Control characters and FCS characters are always in multiples of eight bits. The data though,

when present, is in multiples of from one to eight bits. All data characters within a Frame are the same size, except

for the last data character, which may be smaller.

The Address field may be a fixed size or a variable size. When variable, it contains a fixed sized portion that is

conditionally followed by additional Address bytes. The last byte of the fixed size portion and every byte thereafter

is checked to see if the following byte is part of the Address field. The check examines the least significant bit of the

byte. (The hardware checks the first bit received even if software has configured the device for Most Significant Bit

First reception.) If the least significant bit is clear, then the next byte is included as part of the variable sized Address

field. Though the Address field may contain a number of bytes, only the first byte is used by the SIO4 hardware for

address comparison. If the first byte is all ones or if the value matches a preset address value, then the Frame is

captured. Otherwise the Frame is ignored.

The captured Control field may also be a fixed size or a variable size. When variable, it contains a fixed sized

portion that is conditionally followed by additional Control bytes. The last byte of the fixed size portion and every

byte thereafter is checked to see if the following byte is part of the Control field. The check examines the most

significant bit of the byte. (The hardware checks the last bit received even if software has configured the device for

Most Significant Bit First reception.) If the most significant bit is set, then the next byte is included as part of the

variable sized Control field. After this, one additional byte is included in the Control field.

The FCS, or Frame Check Sequence, is a CRC calculated over the content of frame from the first Address byte to

the last Data byte. The SIO4 can generate CRCs of eight, 16 or 32 bits. The FCS is inserted automatically by the

transmitter as the frame is being sent. On reception, the calculated FCS is compared against the received FCS. The

result of the comparison is included in the frame status.

While a frame is not being transmitted, the transmitter is typically configured to output a continuous stream of Flag

sequences. These are repeated until the next Frame is sent. At the very minimum, individual frames may be

separated by only a single Flag sequence. This results in the sequence FCS-Flag-Address. The SIO4 transmitter can

also be configured to create a minimum inter-frame delay consisting of up to 10 Flag sequences.

2.2. History

The current official HDLC specification is documented by ISO 13239. This was preceded by a number of other ISO

specifications. There are also a number of additional specifications for various HDLC subsets, derivatives and other

SIO4/8, HDLC Protocol Library, Reference Manual

9

General Standards Corporation, Phone: (256) 880-8787

aspects of implementation. The origin for HDLC is SDLC, which was designed by IBM in 1975 for use with its

SNA traffic. SDLC was subsequently submitted by IBM for codification. After some modifications it was renamed

HDLC and was standardized by ISO 3309, which was eventually replaced by ISO 13239.

SIO4/8, HDLC Protocol Library, Reference Manual

10

General Standards Corporation, Phone: (256) 880-8787

3. Functions

The library header file is sio4_hdlc.h. Including this header in a source file gives the source the full library and

driver interface as the library header file includes the driver header files sio4.h and sio4_usc.h. The library

header defines the complete HDLC interface offered by the library. The interface includes functions, structures, and

macros.

3.1. High Level Functions

The high level functions are described below.

3.1.1. sio4_hdlc_lib_init()

This function is required in order to prepare the HDLC Protocol Library for operation. This must be the first call to

the library.

Prototype

int sio4_hdlc_lib_init(void);

Argument Description

None The function has no arguments.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.2. sio4_hdlc_version()

This function retrieves version and build information about the library.

Prototype

int sio4_hdlc_version(const char** version, const char** built);

Argument Description

fd This is a file descriptor obtained by a call to sio4_hdlc_open().

version The library version number is returned here.

built The library build date and time are returned here. The string is formatted as if produced by

the below C statement. The argument may be NULL.
printf(__DATE__ ″, ″ __TIME__);

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.3. sio4_hdlc_open()

This function is the entry point to open a connection to an SIO4 for HDLC operation. The handle returned by this

call is used for all subsequent access to the specified serial channel. The handle can be used for access via the

library’s high level functions, the library’s low level functions, and for any access to the board that is made without

the HDLC Protocol Library.

SIO4/8, HDLC Protocol Library, Reference Manual

11

General Standards Corporation, Phone: (256) 880-8787

Prototype

int sio4_hdlc_open(int index);

Argument Description

index This is the zero based index of the SIO4 serial channel to access.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

>= 0 A valid file access handle.

3.1.4. sio4_hdlc_close()

This function is the entry point to close a connection previously opened to an SIO4 for HDLC operation. All

resources allocated by the library for the opened device are released as part of the close operation. This includes

freeing allocated memory and closing access to the SIO4.

Prototype

int sio4_hdlc_close(int fd);

Argument Description

fd This is a file descriptor obtained by a call to sio4_hdlc_open().

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.5. sio4_hdlc_ioctl()

This function is the entry point to performing IOCTL operations on the device. Refer to the driver reference manual

for complete information on the driver’s set of IOCTL services.

Prototype

int sio4_hdlc_ioctl(int fd, int cmd, void* arg);

Argument Description

fd This is a file descriptor obtained by a call to sio4_hdlc_open().

cmd This is an IOCTL macro contained in sio4.h or sio4_usc.h.

arg This is the argument type required for the above referenced IOCTL service.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.6. sio4_hdlc_init()

This function initializes an sio4_hdlc_t structure according to the capabilities of the accessed device and a few

basic caller preferences. This function operates mostly by calling a low level function for each of the structure fields.

Prototype

int sio4_hdlc_init(

SIO4/8, HDLC Protocol Library, Reference Manual

12

General Standards Corporation, Phone: (256) 880-8787

 int fd,

 const sio4_hdlc_init_t* init,

 sio4_hdlc_t* hdlc,

 const char** err);

Argument Description

fd This is a file descriptor obtained by a call to sio4_hdlc_open().

init This structure provides the basic information needed to initialize numerous fields in the next

structure. See below for more information.

hdlc This is the structure that the call will initialize. Any field pertaining to an unsupported

feature will be set to -1. (Refer to section 3.3.1, page 20.)

err In the event of an error this will be set to identify the source of the error. This may be

NULL.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

Data Type

This structure contains information used to determine how to configure clocking for the USC transmitter and

receiver.

typedef struct

{

 // All fields must be filled in before calling sio4_hdlc_init().

 s32 tx_bit_rate;

 s32 rx_bit_rate;

 s32 rx_uses_cbl_rxc;

} sio4_hdlc_init_t;

Field Description

tx_bit_rate This is the desired bit rate for the transmitter. This value must be greater than or

equal to one, and less than or equal to 10,000,000. * †

rx_bit_rate This is the desired bit rate for the receiver. This value must be greater than or

equal to one, and less than or equal to 10,000,000. * †

rx_uses_cbl_rxc This field is used to indicate if the receiver will receive its clock from the cable’s

Rx Clock signal. Valid values are given in the table below. †

Values Description

SIO4_HDLC_RX_USES_CBL_RXC_NO The receiver will get its clock

from the DPLL.

SIO4_HDLC_RX_USES_CBL_RXC_YES The receiver will get its clock

from the cable’s Rx Clock

signal.

* If the bit rate is the same for the transmitter and the receiver, then the transmitter will use the same clock

source used by the receiver.

† The cable’s Tx Clock signal will be driven with the transmitter clock if the transmitter and receiver use

the same bit rate, or if the receiver does not get its clock from the cable’s Rx Clock signal.

3.1.7. sio4_hdlc_get()

This function retrieves the settings from the SIO4 for each of the referenced structure’s fields. This function operates

by calling a low level function for each of the structure fields.

SIO4/8, HDLC Protocol Library, Reference Manual

13

General Standards Corporation, Phone: (256) 880-8787

Prototype

int sio4_hdlc_get(int fd, sio4_hdlc_t* hdlc, const char** err);

Argument Description

fd This is a file descriptor obtained by a call to sio4_hdlc_open().

hdlc This is the structure where the settings are to be recorded. Any field pertaining to an

unsupported feature will be set to -1. The value -2 indicates a setting that is invalid. (Refer

to section 3.3.1, page 20.)

err In the event of an error this will be set to identify the source of the error. This may be

NULL.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.8. sio4_hdlc_set()

This function configures an SIO4 channel according to the settings of the referenced sio4_hdlc_t structure. All

fields are validated before any settings are applied. This function operates by calling a low level function for each of

the structure fields.

NOTE: Before calling this function the structure should be initialized by calling the

sio4_hdlc_init() function (section 3.1.6, page 11).

Prototype

int sio4_hdlc_set(int fd, const sio4_hdlc_t* hdlc, const char** err);

Argument Description

fd This is a file descriptor obtained by a call to sio4_hdlc_open().

hdlc This is the structure containing the settings to be applied to the accessed device. (Refer to

section 3.3.1, page 20.)

err In the event of an error this will be set to identify the source of the error. This may be

NULL.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.9. sio4_hdlc_show()

This function displays the content of the referenced sio4_hdlc_t structure to the screen. This is provided to

assist debugging efforts.

Prototype

int sio4_hdlc_show(int fd, const sio4_hdlc_t* hdlc, const char** err);

Argument Description

fd This is a file descriptor obtained by a call to sio4_hdlc_open().

hdlc This is the structure whose content will be displayed. (Refer to section 3.3.1, page 20.)

err In the event of an error this will be set to identify the source of the error. This may be

NULL.

SIO4/8, HDLC Protocol Library, Reference Manual

14

General Standards Corporation, Phone: (256) 880-8787

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.10. sio4_hdlc_rx_flush()

This function flushes the entire receive side of the channel, both hardware and software wise, in case the application

receives status indicating that data has been lost or corrupted. This may be called for in cases of a data overrun, a

frame overrun, a CRC error or any other condition as reported when the frame is read. All receive data is discarded

when this call is made. This includes data in the library’s buffer, data in the SIO4’s Rx FIFO, and data in the USC

receiver.

NOTE: An Rx Flush request is rejected and returns –EBUSY if an Rx Flush request is already

active (see sio4_hdlc_rx_flush(), section 3.1.10, page 14) or if an Rx Frame request is

active (see sio4_hdlc_rx_frame(), section 3.1.11, page 14).

Prototype

int sio4_hdlc_rx_flush(int fd);

Argument Description

fd This is a file descriptor obtained by a call to sio4_hdlc_open().

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.11. sio4_hdlc_rx_frame()

This function requests that an HDLC frame be read from the SIO4. If the buffer fills before the frame ends, then

only a partial frame is returned. If the read timeout expires before a frame completes, then at most only a partial

frame may be returned. Always consult the referenced structure’s fields for completion status. This structure will

always indicate the number of bytes retrieved, even if the return value of -1 indicates there was a problem accessing

the device. The status flags are set by the HDLC Protocol Library and may represent either pre or post data transfer

status.

NOTE: An Rx Frame request is rejected and returns –EBUSY if an Rx Flush request is active (see

sio4_hdlc_rx_flush(), section 3.1.10, page 14) or if an Rx Frame request is already active

(see sio4_hdlc_rx_frame(), section 3.1.11, page 14).

Prototype

int sio4_hdlc_rx_frame(int fd, sio4_hdlc_rx_frame_t* rx);

Argument Description

fd This is a file descriptor obtained by a call to sio4_hdlc_open().

rx This structure provides information to the library and is where information is returned by the

library. See below.

Return Value Description

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

SIO4/8, HDLC Protocol Library, Reference Manual

15

General Standards Corporation, Phone: (256) 880-8787

Data Type

This structure is used when reading an HDLC frame from a serial channel. All fields must be initialized before

passing this structure to the protocol library.

typedef struct

{

 // These are filled in by the caller before the transfer.

 void* buf;

 s32 size; // max number of bytes to get

 // These are filled in by the library after the transfer.

 s32 rcvd; // Number of bytes transferred.

 u32 flags; // SIO4_HDLC_FLAG_RX_*

 s32 last; // SIO4_HDLC_RX_LAST_CHAR_LEN_*

} sio4_hdlc_rx_frame_t;

Field Description

buf This points to the buffer used for the data transfer. It is the destination buffer for Rx requests.

size This is the size of the above buffer and represents the maximum number of bytes to read.

rcvd This is the number of bytes received as part of the request. This is reported by the library with

each frame read request. The application must initialize this to zero.

flags This field reports status information about the transfer. This is reported by the library with each

frame read request. The application must initialize this to zero. Valid bit values are given in the

table below.

Value Description

SIO4_HDLC_RX_FLAG_ABORT An Abort was received.

SIO4_HDLC_RX_FLAG_CRC_ERR A CRC error was encountered. *

SIO4_HDLC_RX_FLAG_DATA Data was returned as part in the buffer as

indicated by the rcvd field.

SIO4_HDLC_RX_FLAG_DATA_LOSS Data for this or a following frame was lost.

The specific cause is not specified. *

SIO4_HDLC_RX_FLAG_DATA_OVERRUN There was a data overrun. Receive data was

lost. *

SIO4_HDLC_RX_FLAG_DATA_UNDERRUN Excess data was read from the Rx FIFO.

Indeterminate data was returned. *

SIO4_HDLC_RX_FLAG_DPLL_CV The DPLL lost track for one or two clock

cycles. Data may have been lost. *

SIO4_HDLC_RX_FLAG_DPLL_CV1 The DPLL lost track for one clock cycle.

Data may have been lost. *

SIO4_HDLC_RX_FLAG_DPLL_CV2 The DPLL lost track for two clock cycles.

Data may have been lost. *

SIO4_HDLC_RX_FLAG_EOF A completed frame was received. The last

character in the buffer is the last character

of the frame.

SIO4_HDLC_RX_FLAG_FRAME_OVERRUN There was a frame record overrun. One or

more frame records were lost. The frame

data may have been captured, but the frame

size and status are otherwise unknown. *

SIO4_HDLC_RX_FLAG_FRAME_SHORT A frame ended before the frame content

was completely received. *

SIO4_HDLC_RX_FLAG_PARITY A parity error was detected. *

* Each of these status flags represents a condition that calls for resynchronization with the data

SIO4/8, HDLC Protocol Library, Reference Manual

16

General Standards Corporation, Phone: (256) 880-8787

stream. The current frame and some number of subsequent frames are suspect. The recovery

process should include a call to sio4_hdlc_rx_flush().

last This is the size of the last character of the frame. This is reported by the library. If multiple calls

are required to complete a frame, this is set only for the first call. This field is not modified

otherwise. The application must initialize this to zero. The length specified does not include the

Parity Bit, if Parity is enabled. Valid values are given in the table below.

Value Description

SIO4_HDLC_RX_LAST_CHAR_LEN_1 It is 1-bit wide.

SIO4_HDLC_RX_LAST_CHAR_LEN_2 It is 2-bits wide.

SIO4_HDLC_RX_LAST_CHAR_LEN_3 It is 3-bits wide.

SIO4_HDLC_RX_LAST_CHAR_LEN_4 It is 4-bits wide.

SIO4_HDLC_RX_LAST_CHAR_LEN_5 It is 5-bits wide.

SIO4_HDLC_RX_LAST_CHAR_LEN_6 It is 6-bits wide.

SIO4_HDLC_RX_LAST_CHAR_LEN_7 It is 7-bits wide.

SIO4_HDLC_RX_LAST_CHAR_LEN_8 It is 8-bits wide.

3.1.12. sio4_hdlc_tx_abort()

This function immediately initiates an Abort condition on the cable’s output data signal. When waiting for

completion, the library waits no longer than the specified timeout period.

NOTE: A Tx Abort request is rejected and returns –EBUSY if a Tx Abort request is already active

(either a call or the signal at the cable interface), if a Tx Flush request is active (see

sio4_hdlc_tx_flush(), section 3.1.13, page 16) , if a Tx Frame request is active (see

sio4_hdlc_tx_frame(), section 3.1.14, page 17) or if a Tx Wait request is active (see

sio4_hdlc_tx_wait(), section 3.1.15, page 19).

NOTE: Even if the wait argument indicates that the service is not to wait for completion, the abort

request remains active until the abort condition is complete at the cable interface.

Prototype

int sio4_hdlc_tx_abort(int fd, int timeout);

Argument Description

fd This is a file descriptor obtained by a call to sio4_hdlc_open().

timeout This is the maximum amount of time, in seconds, that the call will wait for the opertion to

complete at the cable interface. The valid values are from one to 3600.

Return Value Description

-ETIMEDOUT The timeout period expired before the operation completed.

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.13. sio4_hdlc_tx_flush()

This function flushes the entire transmit side of the channel. This is typically done as part of an error recovery

process in the event of data lost or corruption or other significant error. All buffered transmit data is discarded when

this call is made. This includes data in the SIO4’s Tx FIFO, and data in the USC transmitter. After the flush

completes, and in the absence of any other controlling activity, the transmitter will end any frame previously in

progress. After that, the transmitter will fall back to outputting its configured idle line condition. When waiting for

completion, the library waits no longer than the specified timeout period.

SIO4/8, HDLC Protocol Library, Reference Manual

17

General Standards Corporation, Phone: (256) 880-8787

NOTE: A Tx Flush request is rejected and returns –EBUSY if a Tx Abort request is active (either

a call or the signal at the cable interface) (see sio4_hdlc_tx_abort(), section 3.1.12, page

16), if a Tx Flush request is already active, or if a Tx Frame request is active (see

sio4_hdlc_tx_frame(), section 3.1.14, page 17).

Prototype

int sio4_hdlc_tx_flush(int fd, int timeout);

Argument Description

fd This is a file descriptor obtained by a call to sio4_hdlc_open().

timeout This is the maximum amount of time, in seconds, that the call will wait for the operation to

complete. The valid values are from one to 3600.

Return Value Description

-ETIMEDOUT The maximum timeout period expired before the operation completed.

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.1.14. sio4_hdlc_tx_frame()

This function requests that a block of data be transmitted as an HDLC frame. If the host cannot supply the data to

the board fast enough to keep up with the Tx bit rate at the cable interface, then the data will be transmitted as two or

more smaller frames. If the write timeout expires before the data provided is completely written to the board, then

the application will have to perform some type of recovery operation. Always consult the referenced structure’s

fields for completion status. This structure will always indicate the number of bytes sent, even if the return value is

less than zero. The status flags are set by the HDLC Protocol Library and may represent either pre or post data

transfer status. If an error condition occurs, then the application is responsible for recovery. This recovery would

normally include a call to sio4_hdlc_tx_flush() (see section 3.1.13, page 16). After recovery the application

can begin sending new frames.

NOTE: When a frame write request completes successfully, it does not mean that the entire frame

has been successfully transmitted over the cable. It only means that all frame data has been written

to the board. At completion of the call the frame data may still reside entirely on the board in the

channel’s Tx FIFO.

NOTE: A frame write request is rejected and returns –EBUSY if a Tx Abort request is active

(either a call or the signal at the cable interface) (see sio4_hdlc_tx_abort(), section 3.1.12,

page 16), if a Tx Flush request is active (see sio4_hdlc_tx_flush(), section 3.1.13, page

16), if a Tx Frame request is already active or if a Tx Wait request is active (see

sio4_hdlc_tx_wait(), section 3.1.15, page 19).

Prototype

int sio4_hdlc_tx_frame(int fd, sio4_hdlc_tx_frame_t* tx);

Argument Description

fd This is a file descriptor obtained by a call to sio4_hdlc_open().

tx This structure provides information to the library and is where information is returned by the

library. See below.

Return Value Description

-ETIMEDOUT The maximum timeout period expired before the operation completed.

< 0 An error occurred. This is a negative errno.h value.

SIO4/8, HDLC Protocol Library, Reference Manual

18

General Standards Corporation, Phone: (256) 880-8787

0 The operation completed successfully.

Data Type

This structure is used when writing frames to the serial channel. All fields must be initialized before passing this

structure to the library.

typedef struct

{

 // These are filled in by the caller before the transfer.

 void* buf;

 s32 count; // number of bytes to send

 s32 last; // SIO4_HDLC_TX_LAST_CHAR_LEN_*

 // These are filled in by the library after the transfer.

 s32 sent; // Number of bytes transferred.

 u32 flags; // SIO4_HDLC_FLAG_TX_*

} sio4_hdlc_tx_frame_t;

Field Description

buf This points to the buffer used for the data transfer. It is the source for transmit data. This must

be non-NULL even if the count is zero.

count This is the number of bytes to transfer. The must be a value from zero to 0xFFFF.

last This is the size of the last character of the frame. The application must specify this before

requesting the transfer. Valid values are given in the table below. The length specified does not

include the Parity Bit, if Parity is enabled. The active data bits for the last byte must be right

justified.

Value Description

SIO4_HDLC_TX_LAST_CHAR_LEN_1 It is 1-bit wide.

SIO4_HDLC_TX_LAST_CHAR_LEN_2 It is 2-bits wide.

SIO4_HDLC_TX_LAST_CHAR_LEN_3 It is 3-bits wide.

SIO4_HDLC_TX_LAST_CHAR_LEN_4 It is 4-bits wide.

SIO4_HDLC_TX_LAST_CHAR_LEN_5 It is 5-bits wide.

SIO4_HDLC_TX_LAST_CHAR_LEN_6 It is 6-bits wide.

SIO4_HDLC_TX_LAST_CHAR_LEN_7 It is 7-bits wide.

SIO4_HDLC_TX_LAST_CHAR_LEN_8 It is 8-bits wide.

sent This is the number of bytes transferred as part of the request. This does not include any bytes

added as part of the frame end sequence, such as the CRC. This must be initialized to zero.

flags This field reports status information about the transfer. Valid bit values are given in the table

below. This must be initialized to zero.

Value Description

SIO4_HDLC_TX_FLAG_EOF This indicates that the entire frame was written to

the board.

SIO4_HDLC_TX_FLAG_ERROR This indicates that there was an unspecified error

while trying to perform the operation.

SIO4_HDLC_TX_FLAG_OVERRUN This indicates that there was a FIFO overrun.

SIO4_HDLC_TX_FLAG_UNDERRUN This indicates that the frame completed

prematurely.

SIO4/8, HDLC Protocol Library, Reference Manual

19

General Standards Corporation, Phone: (256) 880-8787

3.1.15. sio4_hdlc_tx_wait()

This function initiates a wait for completion of all the following. The wait will continue so long as any of the

following are still active, but no longer than the specified timeout limit. Multiple wait requests can be active

simultaneously, and each operates independently.

1. It will wait while a Tx Abort request is still active (either a call or the signal at the cable interface) (see

sio4_hdlc_tx_abort(), section 3.1.12, page 16).

2. It will wait while a Tx Frame request is still active (see sio4_hdlc_tx_frame(), section 3.1.14, page

17). This refers only to the period where the call is active.

3. It will wait while there is data in the external Tx FIFO or the USC internal Tx FIFO.

4. It will wait while data is being sent out the cable interface.

Prototype

int sio4_hdlc_tx_wait(int fd, int timeout, int* done);

Argument Description

fd This is a file descriptor obtained by a call to sio4_hdlc_open().

timeout This is the maximum amount of time, in seconds, that the call will wait for the operation to

complete. The valid values are from zero to 3600.

done The library reports here if the transmitter finished sending out all data. This will be zero if

the transmitter did not finish and non-zero if it did. This pointer must not be NULL.

Return Value Description

-ETIMEDOUT The maximum timeout period expired before the operation completed.

< 0 An error occurred. This is a negative errno.h value.

0 The operation completed successfully.

3.2. Low Level Functions

The low level functions provide access to the board features reflected by the individual fields of the sio4_hdlc_t

structure (see section 3.3.1, page 20). This structure is used to access all of the board features that are part of the

HDLC Protocol Library. For each structure field there is a corresponding board feature and an associated low level

function. When calling the high level functions that use the sio4_hdlc_t structure, the high level functions

perform their work by calling the low level functions for each of the structure’s fields. This is especially useful for

activities such as structure initialization and board configuration. Following high level configuration of the board

though, there are times when an application may need to access features represented by only one or two the

sio4_hdlc_t structure fields. This is where an application can make use of the low level function. All of the low

level functions follow the prototype pattern shown below. The function name includes the prefix

“sio4_hdlc_t_” followed by the C style field name, but with the periods (“.”) replaced by underscores (“_”).

Prototype

void sio4_hdlc_t_field_name(int fd, s32* arg,

 sio4_hdlc_action_t action, const char** err);

Argument Description

fd This is a file descriptor obtained by a call to sio4_hdlc_open().

arg This refers to the feature specific value being passed in to the function. This pointer must

SIO4/8, HDLC Protocol Library, Reference Manual

20

General Standards Corporation, Phone: (256) 880-8787

not be NULL.

action This identifies the specific action to be carried out in regards to the above feature specific

value. See below.

err If there is an error, then this field will be set to point to a string naming the sio4_hdlc_t

field for which the error pertains. An example is “hdlc-> cable.loopback.mode”.

This pointer must not be NULL.

Data Type

This enumeration identifies the specific actions called for when a low level function is called.

typedef enum

{

 SIO4_HDLC_ACTION_GET,

 SIO4_HDLC_ACTION_INIT,

 SIO4_HDLC_ACTION_SET,

 SIO4_HDLC_ACTION_SHOW,

 SIO4_HDLC_ACTION_VERIFY

} sio4_hdlc_action_t;

Field Description

SIO4_HDLC_ACTION_GET This requests the current setting from the driver.

SIO4_HDLC_ACTION_INIT This requests the initialization value from the library.

SIO4_HDLC_ACTION_SET This requests that the supplied value be applied by the driver.

SIO4_HDLC_ACTION_SHOW This requests that the supplied value be displayed to the screen.

SIO4_HDLC_ACTION_VERIFY This requests that the supplied value be verified.

Examples

For simplicity sake a low level function name can easily be derived given any field name, as shown in the below

examples. The individual low level function names are identified with the corresponding structure fields beginning

in section 3.3.1, page 20.

Field Function

sio4_hdlc_t.cable.loopback.mode sio4_hdlc_t_cable_loopback_mode()

sio4_hdlc_t.rx.encoding sio4_hdlc_t_rx_encoding()

sio4_hdlc_t.tx.preamble.pattern sio4_hdlc_t_tx_preamble_pattern()

3.3. Data Structures

The library header file is sio4_hdlc.h. Including this header in a source file gives the source the full library and

driver interface as it includes the driver header files sio4.h and sio4_usc.h. The library header defines the

complete HDLC interface offered by the library. The interface includes several functions, a few structures, and

numerous macros. The data structures and associated macros are described below.

3.3.1. sio4_hdlc_t

This structure contains all of the parameters used to configure an SIO4 channel for HDLC operation. The structure is

initialized with default values by calling the sio4_hdlc_init() function (section 3.1.6, page 11). Following

SIO4/8, HDLC Protocol Library, Reference Manual

21

General Standards Corporation, Phone: (256) 880-8787

this call, applications make changes to this structure’s content according to their own requirements. Afterwards, the

structure is passed to the sio4_hdlc_set() function (section 3.1.8, page 13) where the setting are applied to the

board.

typedef struct

{

 // All fields are filled in by the library when calling

 // sio4_hdlc_init(). Application mods must be made before calling

 // sio4_hdlc_set(). sio4_hdlc_init() will set a field to -1

 // if the feature is unsupported.

 struct

 {

 s32 ref;

 s32 prog;

 } osc;

 struct

 {

 s32 enable; // PSRCR D31

 s32 mode; // PSRCR D28, DCE or DTE

 s32 protocol; // PSRSR D24-D27

 s32 txc; // PSRCR D6-D8

 s32 txd; // PSRCR D19-D20

 s32 txaux; // PSRCR D17-D18

 s32 dcd; // PSRCR D15-D16

 s32 dtr_dsr; // PSRCR D21-D22

 s32 rts; // PSRCR D13-D14

 struct

 {

 s32 mode; // PSRCR D23, D29

 } loopback;

 struct

 {

 s32 enable; // PSRCR D30

 } term;

 struct

 {

 s32 txc; // CCR 0x3333

 s32 txd_cts; // CSR D2-D3

 s32 rxc; // CCR 0xCCCC

 s32 rxd_dcd; // CSR D4-D5

 } legacy;

 } cable;

 struct

 {

 s32 mode; // USC CMR D8-D11

 s32 enable; // USC TMR D0-D1

 s32 char_len; // USC TMR D2-D4

 s32 encoding; // USC TMR D13-D15

 s32 bit_rate; // reflects sio4_hdlc_init_t.tx_bit_rate

SIO4/8, HDLC Protocol Library, Reference Manual

22

General Standards Corporation, Phone: (256) 880-8787

 s32 idle_cond; // USC TCSR D8-D10

 s32 share_0; // USC CMR D12

 s32 underrun; // USC CMR D14-D15

 s32 wait_underrun; // USC TCSR D11

 struct

 {

 s32 enable; // USC TMR D9

 s32 type; // USC TMR D11-D12

 s32 preset; // USC TMR D10

 s32 on_end; // USC TMR D8

 } crc;

 struct

 {

 s32 enable; // USC TMR D5

 s32 type; // USC TMR D6-D7

 } parity;

 struct

 {

 s32 enable; // USC CMR D13

 s32 flag; // USC CCR D12

 s32 pattern; // USC CCR D8-D9

 s32 length; // USC CCR D10-D11

 } preamble;

 struct

 {

 s32 size; // FSR D0-D15, read-only

 s32 ae; // TAR D0-D15

 s32 af; // TAR D16-D31

 s32 empty_cfg; // CSR D18, D26

 s32 space_cfg; // CSR D4-D5, else Rx 2x

 } fifo;

 struct

 {

 s32 mode;

 s32 pio_thresh;

 s32 timeout;

 s32 overrun;

 } io;

 } tx;

 struct

 {

 s32 mode; // USC CMR D0-D3

 s32 adrs; // USC RSR D0-D7

 s32 adrs_ctrl; // USC CMR D4-D7

 s32 enable; // USC RMR D0-D1

 s32 char_len; // USC RMR D2-D4

 s32 encoding; // USC RMR D13-D15

 s32 bit_rate; // reflects sio4_hdlc_init_t.rx_bit_rate

 s32 queue_abort;// USC RMR D8

 s32 sync_byte; // SBR D0-D7

SIO4/8, HDLC Protocol Library, Reference Manual

23

General Standards Corporation, Phone: (256) 880-8787

 s32 status_word;// CSR D3

 struct

 {

 s32 enable; // USC RMR D9

 s32 type; // USC RMR D11-D12

 s32 preset; // USC RMR D10

 } crc;

 struct

 {

 s32 enable; // USC RMR D5

 s32 type; // USC RMR D6-D7

 } parity;

 struct

 {

 s32 size; // FSR D16-D21, read-only

 s32 ae; // RAR D0-D15

 s32 af; // RAR D16-D31

 s32 full_cfg; // BCR D8

 } fifo;

 struct

 {

 s32 mode;

 s32 pio_thresh;

 s32 timeout;

 s32 overrun;

 s32 underrun;

 } io;

 struct

 {

 s32 enable; // CSR D2

 s32 clk_src; // BCR D22

 } time_stamp;

 } rx;

 struct

 {

 s32 mode; // USC CCAR D8-D9

 s32 txd; // USC IOCR D6-D7

 s32 cts; // PSRCR D9-D10 + USC IOCR D14-D15

 s32 cts_legacy; // USC IOCR D14-D15

 s32 dcd; // PSRCR D11-D12 + USC IOCR D12-D13

 s32 dcd_legacy; // USC IOCR D12-D13

 // All of the folling USC fields are initialized

 // by sio4_hdlc_init() based on the content of the

 // sio4_hdlc_init_t structure.

 struct

 {

 s32 clk_src; // USC CMCR D3-D5

 s32 txc; // PSRCR D0-D2 + USC IOCR D3-D5

SIO4/8, HDLC Protocol Library, Reference Manual

24

General Standards Corporation, Phone: (256) 880-8787

 s32 txc_legacy; // USC IOCR D3-D5

 } tx;

 struct

 {

 s32 clk_src; // USC CMCR D0-D2

 s32 rxc; // PSRCR D3-D5 + USC IOCR D0-D2

 s32 rxc_legacy; // USC IOCR D0-D2

 } rx;

 struct

 {

 s32 enable; // USC HCR D0

 s32 clk_src; // USC CMCR D8-D9

 s32 divider; // USC TC1R D0-D15

 s32 mode; // USC HCR D1

 } brg0;

 struct

 {

 s32 enable; // USC HCR D4

 s32 clk_src; // USC CMCR D10-D11

 s32 divider; // USC TC0R D0-D15

 s32 mode; // USC HCR D5

 } brg1;

 struct

 {

 s32 clk_src; // USC CMCR D12-D13

 s32 rate; // USC HCR D14-D15

 } ctr0;

 struct

 {

 s32 clk_src; // USC CMCR D14-D15

 s32 rate_src; // USC HCR D13 + ...

 } ctr1;

 struct

 {

 s32 clk_src; // USC CMCR D6-D7

 s32 mode; // USC HCR D8-D9

 s32 rate; // USC HCR D10-D11

 s32 edge; // USC CCSR D8-D9

 } dpll;

 } usc;

} sio4_hdlc_t;

3.3.1.1. sio4_hdlc_t.osc

This section describes the structure’s oscillator configuration fields.

Field Description

osc This structure configures the oscillator interface.

SIO4/8, HDLC Protocol Library, Reference Manual

25

General Standards Corporation, Phone: (256) 880-8787

osc.

ref

This field specifies the frequency of the fixed onboard reference oscillator. The default is 20MHz.

However, as this parameter refers to a fixed resource on the board, the default of 20MHz is used only if

there is a problem accessing the setting from the driver. The feature’s low level function is

sio4_hdlc_t_osc_ref().

osc.

prog

This field specifies the desired programmable oscillator frequency. This is essentially the clock frequency

provided by the onboard programmable oscillator to the USC. The default is 20MHz. The feature’s low

level function is sio4_hdlc_t_osc_prog().

3.3.1.2. sio4_hdlc_t.cable

This section describes the structure’s cable configuration fields.

Field Description

cable This structure configures the cable interface.

cable.

enable

This field either enables or disables the cable transceivers. Valid values are given in the table

below. The feature’s low level function is sio4_hdlc_t_cable_enable().

Value Description

SIO4_HDLC_CABLE_ENABLE_NO Leave the cable transceivers disabled.

SIO4_HDLC_CABLE_ENABLE_YES Enable the cable transceiver. This is the default.

cable.

mode

This field specifies the arrangement of the signals on the cable interface. Valid values are given in

the table below. The feature’s low level function is sio4_hdlc_t_cable_mode().

Value Description

SIO4_HDLC_CABLE_MODE_DCE Select the DCE cable signal configuration.

SIO4_HDLC_CABLE_MODE_DTE Select the DTE cable signal configuration. This is the

default.

cable.

protocol

This field specifies the cable transceiver configuration. The options available depend on the

board’s transceiver capabilities. Valid values are given in the table below. The feature’s low level

function is sio4_hdlc_t_cable_protocol().

Value Description

SIO4_HDLC_CABLE_PROTOCOL_DISABLE This disables the cable transceivers.

SIO4_HDLC_CABLE_PROTOCOL_RS232 This selects the RS232 protocol. This

is the default.

SIO4_HDLC_CABLE_PROTOCOL_RS422_423_1 This selects the RS422/RS423 mixed

protocol version 1.

SIO4_HDLC_CABLE_PROTOCOL_RS422_423_2 This selects the RS422/RS423 mixed

protocol version 2.

SIO4_HDLC_CABLE_PROTOCOL_RS422_RS485 This selects the RS422/RS485 mixed

protocol.

SIO4_HDLC_CABLE_PROTOCOL_RS423 This selects the RS423 protocol.

SIO4_HDLC_CABLE_PROTOCOL_RS530 This selects the RS530 protocol,

version 1.

SIO4_HDLC_CABLE_PROTOCOL_RS530A This selects the RS530 protocol,

version 2.

SIO4_HDLC_CABLE_PROTOCOL_V35 This selects the V.35 protocol, version

1.

SIO4_HDLC_CABLE_PROTOCOL_V35A This selects the V.35 protocol, version

2.

cable.

txc

This field specifies the configuration of the cable’s Tx Clock signal. Valid values are given in the

table below. The feature’s low level function is sio4_hdlc_t_cable_txc().

Value Description

SIO4_HDLC_CABLE_TXC_OUT_0 This drives the signal low.

SIO4/8, HDLC Protocol Library, Reference Manual

26

General Standards Corporation, Phone: (256) 880-8787

SIO4_HDLC_CABLE_TXC_OUT_1 This drives the signal high.

SIO4_HDLC_CABLE_TXC_OUT_CBL_RXA This drives the signal from what appears at the

cable’s Rx Aux signal.

SIO4_HDLC_CABLE_TXC_OUT_CBL_RXC This drives the signal from what appears at the

cable’s Rx Clock signal.

SIO4_HDLC_CABLE_TXC_OUT_OSC This drives the signal from the onboard

oscillator.

SIO4_HDLC_CABLE_TXC_OUT_OSC_INV This drives the signal from the inverted form

of the onboard oscillator.

SIO4_HDLC_CABLE_TXC_OUT_USC_RXC This drives the signal from what appears at the

USC’s Rx Clock pin.

SIO4_HDLC_CABLE_TXC_OUT_USC_TXC This drives the signal from what appears at the

USC’s Tx Clock pin. This is the default.

cable.

txd

This field specifies the configuration of the cable’s Tx Data signal. Valid values are given in the

table below. The feature’s low level function is sio4_hdlc_t_cable_txd().

Value Description

SIO4_HDLC_CABLE_TXD_OUT_0 This drives the signal low.

SIO4_HDLC_CABLE_TXD_OUT_1 This drives the signal high.

SIO4_HDLC_CABLE_TXD_OUT_USC_TXD This drives the signal from what appears at the

USC’s Tx Data pin. This is the default.

cable.

txaux

This field specifies the configuration of the cable’s Tx Aux signal. Valid values are given in the

table below. The feature’s low level function is sio4_hdlc_t_cable_txaux().

Value Description

SIO4_HDLC_CABLE_TXAUX_OUT_0 This drives the signal low.

SIO4_HDLC_CABLE_TXAUX_OUT_1 This drives the signal high.

SIO4_HDLC_CABLE_TXAUX_OUT_OSC This drives the signal from the onboard oscillator.

SIO4_HDLC_CABLE_TXAUX_TRI This tri-states the drive segment of the

transceivers. This is the default.

cable.

dcd

This field specifies the cable DCD signal source when the cable signal is driven. Valid values are

given in the table below. The feature’s low level function is sio4_hdlc_t_cable_dcd().

NOTE: Refer to the usc.dcd field (section 3.3.1.5, page 37) for affecting the cable signal’s

driven state.

Value Description

SIO4_HDLC_CABLE_DCD_OUT_0 This drives the signal low.

SIO4_HDLC_CABLE_DCD_OUT_1 This drives the signal high.

SIO4_HDLC_CABLE_DCD_OUT_RTS This drives the signal from the Rx FIFO

Almost Full status.

SIO4_HDLC_CABLE_DCD_OUT_USC_DCD This drives the signal from what appears at the

USC’s DCD pin. This is the default.

cable.

dtr_dsr

This field specifies the configuration of the cable’s DTR/DSR signal. Valid values are given in the

table below. The feature’s low level function is sio4_hdlc_t_cable_dtr_dsr().

Value Description

SIO4_HDLC_CABLE_DTR_DSR_OUT_0 This drives the signal low.

SIO4_HDLC_CABLE_DTR_DSR_OUT_1 This drives the signal high.

SIO4_HDLC_CABLE_DTR_DSR_IN This configures the signal as an input.

SIO4_HDLC_CABLE_DTR_DSR_TRI This tri-states the drive segment of the

transceivers. This is the default.

cable.

rts

This field specifies the configuration of the cable’s RTS signal. Valid values are given in the table

below. The feature’s low level function is sio4_hdlc_t_cable_rts().

SIO4/8, HDLC Protocol Library, Reference Manual

27

General Standards Corporation, Phone: (256) 880-8787

Value Description

SIO4_HDLC_CABLE_RTS_OUT_0 This drives the signal low.

SIO4_HDLC_CABLE_RTS_OUT_1 This drives the signal high.

SIO4_HDLC_CABLE_RTS_OUT_CTS This drives the signal from what appears at the

USC’s RTS pin.

SIO4_HDLC_CABLE_RTS_OUT_RTS This drives the signal from the Rx FIFO Almost Full

status. This is the default.

cable.

loopback

This structure configures the cable’s loopback feature.

cable.

loopback.

mode

This field specifies the loopback mode. Valid values are given in the table below. The feature’s

low level function is sio4_hdlc_t_cable_loopback_mode().

Value Description

SIO4_HDLC_LOOPBACK_MODE_DISABLE This disables loopback operation. This is the

default.

SIO4_HDLC_LOOPBACK_MODE_EXTERNAL This selects the external loopback mode. *

SIO4_HDLC_LOOPBACK_MODE_INTERNAL This selects the internal loopback mode.

* If external loopback mode is requested but not available, then the internal loopback mode is

selected.

cable.

term

This structure configures the cable’s termination feature. The operation of this feature depends on

the selected cable protocol.

cable.

term.

enable

This field specifies the configuration of the transceiver’s built-in termination capabilities. Valid

values are given in the table below. The feature’s low level function is

sio4_hdlc_t_cable_term_enable().

Value Description

SIO4_HDLC_CABLE_TERM_ENABLE_NO The built-in termination is disabled. This is the

default.

SIO4_HDLC_CABLE_TERM_ENABLE_YES The built-in termination is enabled.

cable.

legacy

This structure configures the cable’s legacy interface feature. These fields are utilized if the board

DCE/DTE cable configuration feature is absent or unused.

cable.

legacy.

txc

This field specifies the legacy configuration of the cable’s Tx Clock signal. Valid values are given

in the table below. The feature’s low level function is

sio4_hdlc_t_cable_legacy_txc().

Value Description

SIO4_HDLC_CABLE_LEGACY_TXC_DISABLE This disables the Tx Clock signal.

SIO4_HDLC_CABLE_LEGACY_TXC_BOTH This drives the Tx Clock signal on both

the upper and lower group of pins.

SIO4_HDLC_CABLE_LEGACY_TXC_LOW This drives the Tx Clock signal on the

lower group of pins.

SIO4_HDLC_CABLE_LEGACY_TXC_UP This drives the Tx Clock signal on the

upper group of pins. This is the default.

cable.

legacy.

txd_cts

This field specifies the legacy configuration of the cable’s Tx Data and CTS signals. Valid values

are given in the table below. The feature’s low level function is

sio4_hdlc_t_cable_legacy_txd_cts().

Value Description

SIO4_HDLC_CABLE_LEGACY_TXD_CTS_BOTH This drives the signals on both the upper

and lower group of pins.

SIO4_HDLC_CABLE_LEGACY_TXD_CTS_LOW This drives the signals on the lower

group of pins.

SIO4_HDLC_CABLE_LEGACY_TXD_CTS_TRI This tri-states the signals.

SIO4_HDLC_CABLE_LEGACY_TXD_CTS_UP This drives the signals on the upper

SIO4/8, HDLC Protocol Library, Reference Manual

28

General Standards Corporation, Phone: (256) 880-8787

group of pins. This is the default.

cable.

legacy.

rxc

This field specifies the legacy configuration of the cable’s Rx Clock signal. Valid values are given

in the table below. The feature’s low level function is

sio4_hdlc_t_cable_legacy_rxc().

Value Description

SIO4_HDLC_CABLE_LEGACY_RXC_DISABLE This disables the Tx Clock signal.

SIO4_HDLC_CABLE_LEGACY_RXC_LOW This drives the Tx Clock signal on both

the upper and lower group of pins. This is

the default.

SIO4_HDLC_CABLE_LEGACY_RXC_UP This drives the Tx Clock signal on the

lower group of pins.

cable.

legacy.

rxd_dcd

This field specifies the legacy configuration of the cable’s Rx Data and DCD signals. Valid values

are given in the table below. The feature’s low level function is

sio4_hdlc_t_cable_legacy_rxd_dcd().

Value Description

SIO4_HDLC_CABLE_LEGACY_RXD_DCD_DISABLE This disables the signals.

SIO4_HDLC_CABLE_LEGACY_RXD_DCD_LOW This uses the signals as inputs from

the lower group of pins. This is the

default.

SIO4_HDLC_CABLE_LEGACY_RXD_DCD_UP This uses the signals as inputs from

the upper group of pins.

3.3.1.3. sio4_hdlc_t.tx

This section describes the structure’s transmitter configuration fields.

Field Description

tx This structure configures the transmitter portion of the channel.

tx.

mode

This field specifies the transmitter’s operating mode. Valid values are given in the table

below. The feature’s low level function is sio4_hdlc_t_tx_mode().

Value Description

SIO4_HDLC_TX_MODE_HDLC This selects the HDLC operating mode. This is the

default and the only valid option for this library.

tx.

enable

This field specifies if the transmitter is to be enabled. When configuration is begun (see

sio4_hdlc_set(), section 3.1.8, page 13) the transmitter is initialized and disabled. The

option in this field is applied towards the end of the configuration process. Valid values are

given in the table below. The feature’s low level function is

sio4_hdlc_t_tx_enable().

Value Description

SIO4_HDLC_TX_ENABLE_NO_AFTER This disables the transmitter after it has

finished the transmission in progress.

SIO4_HDLC_TX_ENABLE_NO_NOW This disables the transmitter immediately.

SIO4_HDLC_TX_ENABLE_YES_NOW This enables the transmitter immediately.

This is the default.

SIO4_HDLC_TX_ENABLE_YES_W_AE This enables the transmitter according to the

state of any hardware flow control lines.

tx.

char_len

This field specifies if the size of transmitted characters. The length specified includes the

Parity Bit, if Parity is enabled. The data bits are the lower significant bits of the byte. (See

the Z16C30 data book for exceptions.) Valid values are given in the table below. The

feature’s low level function is sio4_hdlc_t_tx_char_len().

SIO4/8, HDLC Protocol Library, Reference Manual

29

General Standards Corporation, Phone: (256) 880-8787

Value Description

SIO4_HDLC_TX_CHAR_LEN_1 Characters are 1-bit in length.

SIO4_HDLC_TX_CHAR_LEN_2 Characters are 2-bits in length.

SIO4_HDLC_TX_CHAR_LEN_3 Characters are 3-bits in length.

SIO4_HDLC_TX_CHAR_LEN_4 Characters are 4-bits in length.

SIO4_HDLC_TX_CHAR_LEN_5 Characters are 5-bits in length.

SIO4_HDLC_TX_CHAR_LEN_6 Characters are 6-bits in length.

SIO4_HDLC_TX_CHAR_LEN_7 Characters are 7-bits in length.

SIO4_HDLC_TX_CHAR_LEN_8 Characters are 8-bits in length. This is the default.

tx.

encoding

This field specifies if the encoding of the transmitted data. Valid values are given in the table

below. The feature’s low level function is sio4_hdlc_t_tx_encoding().

Value Description

SIO4_HDLC_TX_ENCODING_BI_MARK This refers to Biphase Mark encoding.

SIO4_HDLC_TX_ENCODING_BI_LEVEL This refers to Biphase Level encoding.

SIO4_HDLC_TX_ENCODING_BI_SPACE This refers to Biphase Space encoding.

SIO4_HDLC_TX_ENCODING_D_BI_LEVEL This refers to Differential Biphase

Level encoding.

SIO4_HDLC_TX_ENCODING_NRZ This refers to NRZ encoding.

SIO4_HDLC_TX_ENCODING_NRZB This refers to NRZB encoding.

SIO4_HDLC_TX_ENCODING_NRZI_MARK This refers to NRZI-Mark encoding.

SIO4_HDLC_TX_ENCODING_NRZI_SPACE This refers to NRZI-Space encoding.

This is the default.

tx.

bit_rate

This specifies the desired transmission bit rate. During the sio4_hdlc_init() call

(section 3.1.6, page 11) this is computed from the sio4_hdlc_init_t.tx_bit_rate

field provided to the call. The feature’s low level function is

sio4_hdlc_t_tx_bit_rate().

tx.

idle_cond

This field specifies what appears on the Tx Data cable signal while no data is being

transmitted. Valid values are given in the table below. The feature’s low level function is

sio4_hdlc_t_tx_idle_cond().

Value Description

SIO4_HDLC_TX_IDLE_COND_0 The Tx Data signal is driven low.

SIO4_HDLC_TX_IDLE_COND_0_1 The Tx Data signal is alternately

driven low then high.

SIO4_HDLC_TX_IDLE_COND_1 The Tx Data signal is driven low.

SIO4_HDLC_TX_IDLE_COND_DEFAULT The Tx Data signal is with the pattern

that is the default for the selected

serial protocol. This is the default.

SIO4_HDLC_TX_IDLE_COND_MARK The Tx Data signal is driven with the

Mark state.

SIO4_HDLC_TX_IDLE_COND_MARK_SPACE The Tx Data signal is alternately

driven with the Mark and Space

states.

SIO4_HDLC_TX_IDLE_COND_SPACE The Tx Data signal is driven with the

Space state.

tx.

share_0

This field specifies if the Flag patterns driven on the Tx Data signal during idle periods will

share the intervening zero value. The transmitter never shares the zeros that appear at frame

boundaries. Valid values are given in the table below. The feature’s low level function is

sio4_hdlc_t_tx_share_0().

Value Description

SIO4_HDLC_TX_SHARE_0_NO Do not share the zero bit.

SIO4_HDLC_TX_SHARE_0_YES Do share the zero bit. This is the default.

SIO4/8, HDLC Protocol Library, Reference Manual

30

General Standards Corporation, Phone: (256) 880-8787

tx.

underrun

This field specifies what the transmitter will transmit when it needs data but none is present

in its Tx FIFO. Valid values are given in the table below. The feature’s low level function is

sio4_hdlc_t_tx_underrun().

Value Description

SIO4_HDLC_TX_UNDERRUN_ABORT The transmitter sends an Abort sequence.

SIO4_HDLC_TX_UNDERRUN_CRC_F The transmitter sends the configured CRC

followed by the Flag sequence. This is the

default.

SIO4_HDLC_TX_UNDERRUN_EXT_A The transmitter sends an Extended Abort

sequence.

SIO4_HDLC_TX_UNDERRUN_FLAG The transmitter sends the Flag sequence.

tx.

wait_underrun

This field specifies the transmitter’s reaction to running out of data when additional data is

needed to complete a frame. The feature’s low level function is

sio4_hdlc_t_tx_wait_underrun().

Value Description

SIO4_HDLC_TX_WAIT_UNDERRUN_NO The transmitter is to end the frame

prematurely rather than wait for additional

data. This is the default.

SIO4_HDLC_TX_WAIT_UNDERRUN_YES The transmitter is to wait for additional

data and not end the frame prematurely.

tx.

crc

This structure configures the transmitter’s use of a CRC at the end of a Frame.

tx.

crc.

enable

This field enables or disables use of a CRC at the end of frames. Valid values are given in

the table below. The feature’s low level function is sio4_hdlc_t_tx_crc_enable().

Value Description

SIO4_HDLC_TX_CRC_ENABLE_NO CRCs are not used.

SIO4_HDLC_TX_CRC_ENABLE_YES CRCs are used. This is the default.

tx.

crc.

type

This field selects the type of CRC used, when CRC use is enabled. Valid values are given in

the table below. The feature’s low level function is sio4_hdlc_t_tx_crc_type().

Value Description

SIO4_HDLC_TX_CRC_TYPE_16 This selects the 16-bit polynomial CRC.

SIO4_HDLC_TX_CRC_TYPE_32 This selects the 32-bit polynomial CRC.

SIO4_HDLC_TX_CRC_TYPE_CCITT This selects the 16-bit CCITT CRC. This is

the default.

tx.

crc.

preset

This field selects the CRC starting value. Valid values are given in the table below. The

feature’s low level function is sio4_hdlc_t_tx_crc_preset().

Value Description

SIO4_HDLC_TX_CRC_PRESET_ALL_0 Use a starting value of all zeroes.

SIO4_HDLC_TX_CRC_PRESET_ALL_1 Use a starting value of all ones. This is the

default.

tx.

crc.

on_end

This field specifies if a CRC is to be send at the end of a Frame. Valid values are given in

the table below. The feature’s low level function is sio4_hdlc_t_tx_crc_on_end().

Value Description

SIO4_HDLC_TX_CRC_ON_END_NO Do not send a CRC.

SIO4_HDLC_TX_CRC_ON_END_YES Do send a CRC. This is the default.

tx.

parity

This structure configures the transmitter’s use of Parity checking.

tx.

parity.

This field enables or disables the use of Parity. When enabled, the character size is inclusive

of the Parity Bit, except in the size specified for the last character of the Frame. When used,

SIO4/8, HDLC Protocol Library, Reference Manual

31

General Standards Corporation, Phone: (256) 880-8787

enable the Parity Bit appears to the immediate left of the most significant data bit. Valid values are

given in the table below. The feature’s low level function is

sio4_hdlc_t_tx_parity_enable().

Value Description

SIO4_HDLC_TX_PARITY_ENABLE_NO Do not generate a Parity bit. This is the

default.

SIO4_HDLC_TX_PARITY_ENABLE_YES Do generate a Parity bit.

tx.

parity.

type

This field specifies the type of Parity to use, when its use is enabled. Valid values are given

in the table below. The feature’s low level function is

sio4_hdlc_t_tx_parity_type().

Value Description

SIO4_HDLC_TX_PARITY_TYPE_EVEN This specifies Even Parity. This is the

default.

SIO4_HDLC_TX_PARITY_TYPE_ODD This specifies Odd Parity.

SIO4_HDLC_TX_PARITY_TYPE_ONE This specifies One Parity (the parity bit is

always set).

SIO4_HDLC_TX_PARITY_TYPE_ZERO This specifies Zero Parity (the parity bit is

always clear).

tx.

preamble

This structure configures the transmitter’s use of a Preamble sequence, which is driven on

the cable’s Tx Data signal preceding each Frame. The Preamble can be used to force a

minimum time delay between successive Frames.

tx.

preamble.

enable

This field enables or disables the use of a Preamble sequence. Valid values are given in the

table below. The feature’s low level function is

sio4_hdlc_t_tx_preamble_enable().

Value Description

SIO4_HDLC_TX_PREAMBLE_ENABLE_NO Do not send a Preamble sequence. This

is the default.

SIO4_HDLC_TX_PREAMBLE_ENABLE_YES Do send a Preamble sequence.

tx.

preamble.

flag

This field enables or disables the use of the Flag sequence as the Preamble Pattern. This

selection works in conjunction with the Preamble Pattern selection below. Valid values are

given in the table below. The feature’s low level function is

sio4_hdlc_t_tx_preamble_flag().

Value Description

SIO4_HDLC_TX_PREAMBLE_FLAG_NO Do not use the Flag sequence.

SIO4_HDLC_TX_PREAMBLE_FLAG_YES Do use the Flag sequence. This is the

default.

tx.

preamble.

pattern

This field selects the Preamble Pattern to use, when use of a Preamble is enabled. Valid

values are given in the table below. The feature’s low level function is

sio4_hdlc_t_tx_preamble_pattern().

Value Description

SIO4_HDLC_TX_PREAMBLE_PATTERN_0 This specifies continuous zero bits.

SIO4_HDLC_TX_PREAMBLE_PATTERN_1 This specifies continuous one bits. If

the above Flag option is Yes, then this

option refers to the Flag sequence. This

is the default.

SIO4_HDLC_TX_PREAMBLE_PATTERN_01 This specifies a pattern of a zero bit

followed by a one bit.

SIO4_HDLC_TX_PREAMBLE_PATTERN_10 This specifies a pattern of a one bit

followed by a zero bit.

tx. This field specifies the length of the Preamble Pattern to use, when use of a Preamble is

SIO4/8, HDLC Protocol Library, Reference Manual

32

General Standards Corporation, Phone: (256) 880-8787

preamble.

length

enabled. Valid values are given in the table below. The feature’s low level function is

sio4_hdlc_t_tx_preamble_length().

Value Description

SIO4_HDLC_TX_PREAMBLE_LENGTH_8_BITS The length is 8-bits. This is the

default.

SIO4_HDLC_TX_PREAMBLE_LENGTH_16_BITS The length is 16-bits.

SIO4_HDLC_TX_PREAMBLE_LENGTH_32_BITS The length is 32-bits.

SIO4_HDLC_TX_PREAMBLE_LENGTH_64_BITS The length is 64-bits.

tx.

fifo

This structure configures the transmitter’s FIFO parameters.

tx.

fifo.

size

This field is filled in by the sio4_hdlc_init() call (section 3.1.6, page 11) with the

size of the channel’s Tx FIFO. This is offered for informational purposes only. The feature’s

low level function is sio4_hdlc_t_tx_fifo_size().

tx.

fifo.

ae

This field specifies the Tx FIFO Almost Empty setting. The Tx FIFO Almost Empty status is

asserted (goes low) when the Tx FIFO contains this number of values, or fewer. The valid

value range is from zero to 0xFFFF. The default is 0x7. The feature’s low level function is

sio4_hdlc_t_tx_fifo_ae().

tx.

fifo.

af

This field specifies the Tx FIFO Almost Full setting. The Tx FIFO Almost Full status is

asserted (goes low) when the Tx FIFO contains this number of free spaces, or fewer. The

valid value range is from zero to 0xFFFF. The default is 0x7. The feature’s low level

function is sio4_hdlc_t_tx_fifo_af().

tx.

fifo.

empty_cfg

This field configures the transmitter’s reaction to the Tx FIFO becoming empty. Valid

values are given in the table below. The feature’s low level function is

sio4_hdlc_t_tx_fifo_empty_cfg().

Value Description

SIO4_HDLC_TX_FIFO_EMPTY_CFG_IGNORE This specifies that the condition is

to be ignored. This is the default.

SIO4_HDLC_TX_FIFO_EMPTY_CFG_TX_OFF This specifies that the transmitter be

disabled when the condition occurs.

tx.

fifo.

space_cfg

This field configures the FIFO space allocation between the transmitter and the receiver

when the Tx FIFO and Rx FIFO are of different sizes. Valid values are given in the table

below. The feature’s low level function is sio4_hdlc_t_tx_fifo_space_cfg().

Value Description

SIO4_HDLC_TX_FIFO_SPACE_CFG_RX_2X This specifies that the Rx FIFO be

twice as large as the Tx FIFO. This is

the default.

SIO4_HDLC_TX_FIFO_SPACE_CFG_TX_2X This specifies that the Tx FIFO be

twice as large as the Rx FIFO.

tx.

io

This structure configures the transmitter’s software settings. These settings are used during

sio4_hdlc_tx_frame() calls (see section 3.1.14, page 17).

tx.

io.

mode

This field configures the mechanism used to transfer data from host memory to the channel’s

Tx FIFO. Valid values are given in the table below. The feature’s low level function is

sio4_hdlc_t_tx_io_mode().

Value Description

SIO4_HDLC_TX_IO_MODE_DMA This selects DMA mode transfers. *

SIO4_HDLC_TX_IO_MODE_DMDMA This selects Demand Mode DMA mode

transfers. *

SIO4_HDLC_TX_IO_MODE_PIO This selects PIO mode transfers. This is the

default.

* The SIO4 has only two DMA engines. A DMA or DMDMA transfer request will fail if

both DMA engines are already in use by other SIO4 channels.

SIO4/8, HDLC Protocol Library, Reference Manual

33

General Standards Corporation, Phone: (256) 880-8787

tx.

io.

pio_thresh

This field specifies the threshold for write request sizes that force the use of PIO mode. If a

write request is this size or less, then the transfer will automatically use PIO. The valid range

is any non-negative value. The default is 64. The feature’s low level function is

sio4_hdlc_t_tx_io_pio_thresh().

tx.

io.

timeout

This field specifies the maximum duration of write requests to the driver. This refers to calls

made to the driver and not to calls made to the HDLC Protocol Library. The valid range is

from zero to 3600. The units are seconds. The value zero should be used with PIO mode

only as it tells the driver to write as much data as possible to the Tx FIFO, but not to wait for

addition free space. DMA and DMDMA requests always require a sleep to wait for the

hardware to complete the transfer. The default is 10 seconds. The feature’s low level

function is sio4_hdlc_t_tx_io_timeout().

tx.

io.

overrun

This field tells the driver if it is to check for Tx FIFO overrun conditions before proceeding

with write requests. Valid values are given in the table below. The feature’s low level

function is sio4_hdlc_t_tx_io_overrun().

Value Description

SIO4_HDLC_TX_IO_OVERRUN_CHECK This specifies that the driver should check

for overrun conditions.

SIO4_HDLC_TX_IO_OVERRUN_IGNORE This specifies that the driver should not

check for overrun conditions. This is the

default. Overrun testing is performed by

the library and need not be performed by

the driver.

3.3.1.4. sio4_hdlc_t.rx

This section describes the structure’s receiver configuration fields.

Field Description

rx This structure configures the receiver portion of the channel.

rx.

mode

This field specifies the receiver’s operating mode. Valid values are given in the table below.

The feature’s low level function is sio4_hdlc_t_rx_mode().

Value Description

SIO4_HDLC_RX_MODE_HDLC This selects the HDLC operating mode. This is the

default and the only valid option for this library.

rx.

adrs

This specifies the desired receiver/station address. The receiver will ignore Frames addressed to

other stations. Valid values are from zero to 0xFF. The default is 0xFF. The feature’s low level

function is sio4_hdlc_t_rx_adrs().

rx.

adrs_ctrl

This field specifies the structure of the address and control fields expected in received Frames.

The SIO4 hardware performs address comparison only against the first byte of the address and

control field. Valid values are given in the table below. The feature’s low level function is

sio4_hdlc_t_rx_adrs_ctrl().

Value Description

SIO4_HDLC_RX_ADRS_CTRL_16 The field is fixed at 16-bits. This is the default.

SIO4_HDLC_RX_ADRS_CTRL_24 The field is fixed at 24-bits.

SIO4_HDLC_RX_ADRS_CTRL_32 The field is fixed at 32-bits.

SIO4_HDLC_RX_ADRS_CTRL_EA_16 The address field is variable length, but the

control field is fixed at 16-bits.

SIO4_HDLC_RX_ADRS_CTRL_EA_24 The address field is variable length, but the

control field is fixed at 24-bits.

SIO4_HDLC_RX_ADRS_CTRL_EAC8 The address and control field are variable

length, and are followed by a fixed 8-bit field.

SIO4_HDLC_RX_ADRS_CTRL_EAC16 The address and control field are variable

SIO4/8, HDLC Protocol Library, Reference Manual

34

General Standards Corporation, Phone: (256) 880-8787

length, and are followed by a fixed 16-bit field.

SIO4_HDLC_RX_ADRS_CTRL_OFF No address or control fields are included.

rx.

enable

This field specifies if the receiver is to be enabled. When configuration is begun (see

sio4_hdlc_set(), section 3.1.8, page 13) the receiver is initialized and disabled. The

option in this field is applied towards the end of the configuration process. Valid values are

given in the table below. The feature’s low level function is sio4_hdlc_t_rx_enable().

Value Description

SIO4_HDLC_RX_ENABLE_NO_AFTER This disables the receiver after it has finished

the reception in progress.

SIO4_HDLC_RX_ENABLE_NO_NOW This disables the receiver immediately.

SIO4_HDLC_RX_ENABLE_YES_NOW This enables the receiver immediately. This is

the default.

SIO4_HDLC_RX_ENABLE_YES_W_AE This enables the receiver according to the state

of any hardware flow control lines.

rx.

char_len

This field specifies if the size of receiver characters. The length specified includes the Parity

Bit, if Parity is enabled. The data bits are the lower significant bits of the byte. (Refers to the

Z16C30 data book for exceptions.) Valid values are given in the table below. The feature’s low

level function is sio4_hdlc_t_rx_char_len().

Value Description

SIO4_HDLC_RX_CHAR_LEN_1 Characters are 1-bit in length.

SIO4_HDLC_RX_CHAR_LEN_2 Characters are 2-bits in length.

SIO4_HDLC_RX_CHAR_LEN_3 Characters are 3-bits in length.

SIO4_HDLC_RX_CHAR_LEN_4 Characters are 4-bits in length.

SIO4_HDLC_RX_CHAR_LEN_5 Characters are 5-bits in length.

SIO4_HDLC_RX_CHAR_LEN_6 Characters are 6-bits in length.

SIO4_HDLC_RX_CHAR_LEN_7 Characters are 7-bits in length.

SIO4_HDLC_RX_CHAR_LEN_8 Characters are 8-bits in length. This is the default.

rx.

encoding

This field specifies the encoding of the received data. Valid values are given in the table below.

The feature’s low level function is sio4_hdlc_t_rx_encoding().

Value Description

SIO4_HDLC_RX_ENCODING_BI_MARK This refers to Biphase Mark encoding.

SIO4_HDLC_RX_ENCODING_BI_LEVEL This refers to Biphase Level encoding.

SIO4_HDLC_RX_ENCODING_BI_SPACE This refers to Biphase Space encoding.

SIO4_HDLC_RX_ENCODING_D_BI_LEVEL This refers to Differential Biphase Level

encoding.

SIO4_HDLC_RX_ENCODING_NRZ This refers to NRZ encoding.

SIO4_HDLC_RX_ENCODING_NRZB This refers to NRZB encoding.

SIO4_HDLC_RX_ENCODING_NRZI_MARK This refers to NRZI-Mark encoding.

SIO4_HDLC_RX_ENCODING_NRZI_SPACE This refers to NRZI-Space encoding. This

is the default.

rx.

bit_rate

This specifies the desired receive data bit rate. During the sio4_hdlc_init() call (section

3.1.6, page 11) this is computed from the sio4_hdlc_init_t.rx_bit_rate field

provided to the call. The feature’s low level function is sio4_hdlc_t_rx_bit_rate().

rx.

queue_abort

This field specifies if received Abort sequences are queued through the USC’s Rx FIFO with

the data. Valid values are given in the table below. The feature’s low level function is

sio4_hdlc_t_rx_queue_abort().

Value Description

SIO4_HDLC_RX_QUEUE_ABORT_NO Retain the Abort received status, but do not

queue it through the USC Rx FIFO. *

SIO4_HDLC_RX_QUEUE_ABORT_YES Queue the Abort received status through the

SIO4/8, HDLC Protocol Library, Reference Manual

35

General Standards Corporation, Phone: (256) 880-8787

USC Rx FIFO. This is the default. †

* The Abort received status is available even if it isn’t queued through the USC Rx FIFO. In

this case the status may be reported out of sync with the data received.

† If the Abort received status is queued through the USC Rx FIFO with the data, then it inhibits

the queuing of any Parity Error status. In this case, the Parity Error status is lost.

rx.

sync_byte

This specifies the value to be compared to received data as the data enters the Rx FIFO (the one

outside the USC). This comparison can be used for interrupt generation. Valid values are from

zero to 0xFF. The default is zero. The feature’s low level function is

sio4_hdlc_t_rx_sync_byte().

rx.

status_word

This field controls whether the firmware will place the USC Receive Control/Status Register in

the Rx FIFO along with the received data. Valid values are given in the table below. The

feature’s low level function is sio4_hdlc_t_rx_status_word().

Value Description

SIO4_HDLC_RX_STATUS_WORD_DISABLE The RCSR is not placed in the Rx FIFO.

This is the default.

SIO4_HDLC_RX_STATUS_WORD_ENABLE The RCSR is placed in the Rx FIFO. *

* The HDLC Protocol Library does not accommodate reading Frames with the feature enabled.

Application will have to develop their own frame reading mechanism in this case.

rx.

crc

This structure configures the receiver’s use of a CRC at the end of a Frame.

rx.

crc.

enable

This field enables or disables use of a CRC at the end of frames. Valid values are given in the

table below. The feature’s low level function is sio4_hdlc_t_rx_crc_enable().

Value Description

SIO4_HDLC_RX_CRC_ENABLE_NO CRCs are not used.

SIO4_HDLC_RX_CRC_ENABLE_YES CRCs are used. This is the default.

rx.

crc.

type

This field selects the type of CRC used, when CRC use is enabled. Valid values are given in the

table below. The feature’s low level function is sio4_hdlc_t_rx_crc_type().

Value Description

SIO4_HDLC_RX_CRC_TYPE_16 This selects the 16-bit polynomial CRC.

SIO4_HDLC_RX_CRC_TYPE_32 This selects the 32-bit polynomial CRC.

SIO4_HDLC_RX_CRC_TYPE_CCITT This selects the 16-bit CCITT CRC. This is the

default.

rx.

crc.

preset

This field selects the CRC starting value. Valid values are given in the table below. The

feature’s low level function is sio4_hdlc_t_rx_crc_preset().

Value Description

SIO4_HDLC_RX_CRC_PRESET_ALL_0 Use a starting value of all zeroes.

SIO4_HDLC_RX_CRC_PRESET_ALL_1 Use a starting value of all ones. This is the

default.

rx.

parity

This structure configures the receiver’s use of Parity checking.

rx.

parity.

enable

This field enables or disables the use of Parity. When enabled, the character size is inclusive of

the Parity Bit, except in the size specified for the last character of the Frame. When used, the

Parity Bit appears to the immediate left of the most significant data bit. Valid values are given

in the table below. The feature’s low level function is

sio4_hdlc_t_rx_parity_enable().

Value Description

SIO4_HDLC_RX_PARITY_ENABLE_NO Do not generate a Parity bit. This is the

default.

SIO4_HDLC_RX_PARITY_ENABLE_YES Do generate a Parity bit.

rx. This field specifies the type of Parity to use, when its use is enabled. Valid values are given in

SIO4/8, HDLC Protocol Library, Reference Manual

36

General Standards Corporation, Phone: (256) 880-8787

parity.

type

the table below. The feature’s low level function is sio4_hdlc_t_rx_parity_type().

Value Description

SIO4_HDLC_RX_PARITY_TYPE_EVEN This specifies Even Parity. This is the default.

SIO4_HDLC_RX_PARITY_TYPE_ODD This specifies Odd Parity.

SIO4_HDLC_RX_PARITY_TYPE_ONE This specifies One Parity (the parity bit is

always set).

SIO4_HDLC_RX_PARITY_TYPE_ZERO This specifies Zero Parity (the parity bit is

always clear).

rx.

fifo

This structure configures the receiver’s FIFO parameters.

rx.

fifo.

size

This field is filled in by the sio4_hdlc_init() call (section 3.1.6, page 11) with the size of

the channel’s Rx FIFO. This is offered for informational purposes only. The feature’s low level

function is sio4_hdlc_t_rx_fifo_size().

rx.

fifo.

ae

This field specifies the Rx FIFO Almost Empty setting. The Rx FIFO Almost Empty status is

asserted (goes low) when the Rx FIFO contain this number of values, or fewer. The valid value

range is from zero to 0xFFFF. The default is 0x7. The feature’s low level function is

sio4_hdlc_t_rx_fifo_ae().

rx.

fifo.

af

This field specifies the Rx FIFO Almost Full setting. The Rx FIFO Almost Full status is

asserted (goes low) when the Rx FIFO contain this number of free spaces, or fewer. The valid

value range is from zero to 0xFFFF. The default is 0x7. The feature’s low level function is

sio4_hdlc_t_rx_fifo_af().

rx.

fifo.

full_cfg

This field configures the receiver’s reaction to the Rx FIFO becoming full. Valid values are

given in the table below. The feature’s low level function is

sio4_hdlc_t_rx_fifo_full_cfg(). This field refers to the channel specific setting,

when supported. The corresponding global setting is not handled by the HDLC Protocol

Library. The global setting must be handled separately by the application.

Value Description

SIO4_HDLC_RX_FIFO_FULL_CFG_DISABLE This specifies that the receiver be

disabled when the condition occurs.

SIO4_HDLC_RX_FIFO_FULL_CFG_OVER This specifies that the condition be

ignored. This is the default.

rx.

io

This structure configures the receiver’s software settings. These settings are used during

sio4_hdlc_rx_frame() calls (section 3.1.11, page 14).

rx.

io.

mode

This field configures the mechanism used to transfer data from the channel’s Rx FIFO to host

memory. Valid values are given in the table below. The feature’s low level function is

sio4_hdlc_t_rx_io_mode().

Value Description

SIO4_HDLC_RX_IO_MODE_DMA This selects DMA mode transfers. *

SIO4_HDLC_RX_IO_MODE_DMDMA This selects Demand Mode DMA mode transfers. *

SIO4_HDLC_RX_IO_MODE_PIO This selects PIO mode transfers. This is the default.

* The SIO4 has only two DMA engines. A DMA or DMDMA transfer request will fail if both

DMA engines are already in use by other SIO4 channels.

rx.

io.

pio_thresh

This field specifies the threshold for read request sizes that force the use of PIO mode. If a read

request is this size or less, then the transfer will automatically use PIO. The valid range is any

non-negative value. The default is 64. The feature’s low level function is

sio4_hdlc_t_rx_io_pio_thresh().

rx.

io.

timeout

This field specifies the maximum duration of a call to the driver when reading data from the

board. This refers to calls made to the driver and not to calls made to the HDLC Protocol

Library. The valid range is from zero to 3600. The units are seconds. The value zero should be

used with PIO mode only as it tells the driver to read as much data as possible from the Rx

FIFO, but not to wait for addition data. DMA and DMDMA requests always require a sleep to

wait for the hardware to complete the transfer. The default is 10 seconds. The feature’s low

SIO4/8, HDLC Protocol Library, Reference Manual

37

General Standards Corporation, Phone: (256) 880-8787

level function is sio4_hdlc_t_rx_io_timeout().

rx.

io.

overrun

This field tells the driver if it is to check for Rx FIFO overrun conditions before proceeding

with read requests. Valid values are given in the table below. The feature’s low level function is

sio4_hdlc_t_rx_io_overrun().

Value Description

SIO4_HDLC_RX_IO_OVERRUN_CHECK This specifies that the driver should check

for overrun conditions.

SIO4_HDLC_RX_IO_OVERRUN_IGNORE This specifies that the driver should not

check for overrun conditions. This is the

default. Overrun testing is performed by the

library and need not be performed by the

driver.

rx.

io.

underrun

This field tells the driver if it is to check for Rx FIFO underrun conditions before proceeding

with read requests. Valid values are given in the table below. The feature’s low level function is

sio4_hdlc_t_rx_io_underrun().

Value Description

SIO4_HDLC_RX_IO_UNDERRUN_CHECK This specifies that the driver should check

for underrun conditions.

SIO4_HDLC_RX_IO_UNDERRUN_IGNORE This specifies that the driver should not

check for underrun conditions. This is the

default. Underrun testing is performed by

the library and need not be performed by

the driver.

rx.

time_stamp

This structure configures the receiver’s Time Stamp settings.

rx.

time_stamp.

enable

This field enables or disables the channels use of the Time Stamp feature. Valid values are

given in the table below. The feature’s low level function is

sio4_hdlc_t_rx_time_stamp_enable().

Value Description

SIO4_HDLC_RX_TIME_STAMP_ENABLE_NO Do not use the Time Stamp feature.

This is the default.

SIO4_HDLC_RX_TIME_STAMP_ENABLE_YES Do use the Time Stamp feature. *

* The HDLC Protocol Library does not accommodate reading Frames with this enabled.

rx.

time_stamp.

clk_src

This field selects the Time Stamp clock source. Valid values are given in the table below. The

feature’s low level function is sio4_hdlc_t_rx_time_stamp_clk_src().

Value Description

SIO4_HDLC_RX_TIME_STAMP_CLK_SRC_EXT Use the board’s external TTL clock

source. *

SIO4_HDLC_RX_TIME_STAMP_CLK_SRC_INT Use the board’s internal 1us clock.

This is the default. *

* All four channels on the SIO4 use the same clock source.

3.3.1.5. sio4_hdlc_t.usc

This section describes the structure’s USC configuration fields.

Field Description

usc This structure configures the USC portion of the channel. These fields are filled according to the

bit rates requested for the transmitter and the receiver, and the receiver’s use, or not, of the

cable’s Rx Clock signal.

usc. This field specifies the USC’s overall operating mode. Valid values are given in the table below.

SIO4/8, HDLC Protocol Library, Reference Manual

38

General Standards Corporation, Phone: (256) 880-8787

mode The feature’s low level function is sio4_hdlc_t_usc_mode().

Value Description

SIO4_HDLC_USC_MODE_AUTO_ECHO This is the USC’s Auto Echo mode.

SIO4_HDLC_USC_MODE_LOOPBACK_EXT This is the USC’s external loopback mode.

SIO4_HDLC_USC_MODE_LOOPBACK_INT This is the USC’s internal loopback mode.

SIO4_HDLC_USC_MODE_NORMAL This is the USC’s normal operating mode.

This is the default.

usc.

txd

This field configures the operation of the USC’s Tx Data pin. Valid values are given in the table

below. The feature’s low level function is sio4_hdlc_t_usc_txd().

Value Description

SIO4_HDLC_USC_TXD_OUT_0 The pin is driven low.

SIO4_HDLC_USC_TXD_OUT_1 The pin is driven high.

SIO4_HDLC_USC_TXD_OUT_TXD The pin is driven from the transmitter’s Tx Data

signal. This is the default.

SIO4_HDLC_USC_TXD_TRI The pin is tri-stated.

usc.

cts

This field configures the operation of the USC’s CTS pin. Valid values are given in the table

below. The feature’s low level function is sio4_hdlc_t_usc_cts().

Value Description

SIO4_HDLC_USC_CTS_OUT_0 The pin is driven low.

SIO4_HDLC_USC_CTS_OUT_1 The pin is driven high.

SIO4_HDLC_USC_CTS_IN_CBL_CTS The pin is an input driver from the cable’s CTS

signal.

SIO4_HDLC_USC_CTS_TRI The pin is tri-stated. This is the default.

usc.

cts_legacy

This field configures the operation of the USC’s CTS pin for legacy mode cable interface

configurations. Valid values are given in the table below. The feature’s low level function is

sio4_hdlc_t_usc_cts_legacy().

Value Description

SIO4_HDLC_USC_TX_CTS_LEG_IN The pin operates as an input. This is the

default.

SIO4_HDLC_USC_TX_CTS_LEG_OUT_0 The pin operates as an output driven low.

SIO4_HDLC_USC_TX_CTS_LEG_OUT_1 The pin operates as an output driven high.

usc.

dcd

This field configures the operation of the USC’s DCD pin. Valid values are given in the table

below. The feature’s low level function is sio4_hdlc_t_usc_dcd().

Value Description

SIO4_HDLC_USC_DCD_DISABLE The pin is disabled. This is the default.

SIO4_HDLC_USC_DCD_IN_DCD_CBL_DCD The pin is an input for the receiver’s DCD

function and is driven from the cable’s

DCD signal.

SIO4_HDLC_USC_DCD_IN_SYNC_CBL_DCD The pin is an input for the receiver’s

SYNC function and is driven from the

cable’s DCD signal.

SIO4_HDLC_USC_DCD_OUT_0 The pin is driven low. *

SIO4_HDLC_USC_DCD_OUT_1 The pin is driven high. *

* This option enables the cable DCD signal to be driven, though the cable.dcd field (section

3.3.1.2, page 25) may configure the cable to output an alternate signal.

SIO4/8, HDLC Protocol Library, Reference Manual

39

General Standards Corporation, Phone: (256) 880-8787

usc.

dcd_legacy

This field configures the operation of the USC’s DCD pin for legacy mode cable interface

configurations. Valid values are given in the table below. The feature’s low level function is

sio4_hdlc_t_usc_dcd_legacy().

Value Description

SIO4_HDLC_USC_DCD_LEG_IN_DCD The pin operates as a DCD input. This is the

default.

SIO4_HDLC_USC_DCD_LEG_IN_SYNC The pin operates as a SYNC input.

SIO4_HDLC_USC_DCD_LEG_OUT_0 The pin operates as an output driven low.

SIO4_HDLC_USC_DCD_LEG_OUT_1 The pin operates as an output driven high.

usc.

tx

This structure configures a few of the USC’s transmitter settings.

usc.

tx.

clk_src

This field configures the source for the USC transmitter clock. Valid values are given in the table

below. The feature’s low level function is sio4_hdlc_t_usc_tx_clk_src().

Value Description

SIO4_HDLC_USC_TX_CLK_SRC_BRG0 Select Baud Rate Generator 0.

SIO4_HDLC_USC_TX_CLK_SRC_BRG1 Select Baud Rate Generator 1.

SIO4_HDLC_USC_TX_CLK_SRC_CTR0 Select Counter 0.

SIO4_HDLC_USC_TX_CLK_SRC_CTR1 Select Counter 1.

SIO4_HDLC_USC_TX_CLK_SRC_DISABLE Disable the transmitter. *

SIO4_HDLC_USC_TX_CLK_SRC_DPLL Select the DPLL.

SIO4_HDLC_USC_TX_CLK_SRC_RXC_PIN Select the Rx Clock pin.

SIO4_HDLC_USC_TX_CLK_SRC_TXC_PIN Select the Tx Clock pin.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

tx.

txc

This field configures the operation of the USC’s Tx Clock pin. Valid values are given in the table

below. The feature’s low level function is sio4_hdlc_t_usc_tx_txc().

Value Description

SIO4_HDLC_USC_TX_TXC_IN_0 The pin is an input driven low. *

SIO4_HDLC_USC_TX_TXC_IN_1 The pin is an input driven high.

SIO4_HDLC_USC_TX_TXC_IN_CBL_RXAUX The pin is an input driven from the cable’s

Rx Aux signal.

SIO4_HDLC_USC_TX_TXC_IN_CBL_RXC The pin is an input driven from the cable’s

Rx Clock signal.

SIO4_HDLC_USC_TX_TXC_IN_OSC The pin is an input driven from the

onboard oscillator.

SIO4_HDLC_USC_TX_TXC_IN_OSC_INV The pin is an input driven from the

inverted onboard oscillator.

SIO4_HDLC_USC_TX_TXC_OUT_BRG0 The pin is an output driven from Baud

Rate Generator 0.

SIO4_HDLC_USC_TX_TXC_OUT_BRG1 The pin is an output driven from Baud

Rate Generator 1.

SIO4_HDLC_USC_TX_TXC_OUT_BYTE_CLK The pin is an output driven from the

transmitter’s Byte Clock.

SIO4_HDLC_USC_TX_TXC_OUT_CLK The pin is an output driven from the

transmit clock.

SIO4_HDLC_USC_TX_TXC_OUT_COMP The pin is an output driven from the

transmit complete signal.

SIO4_HDLC_USC_TX_TXC_OUT_CTR1 The pin is an output driven from Counter

1.

SIO4_HDLC_USC_TX_TXC_OUT_DPLL_TX The pin is an output driven from the

transmit clock from the DPLL.

* This is the initial default, though it may change to satisfy bit rate requirements.

SIO4/8, HDLC Protocol Library, Reference Manual

40

General Standards Corporation, Phone: (256) 880-8787

usc.

tx.

txc_legacy

This field configures the operation of the USC’s Tx Clock pin for legacy mode cable interface

configurations. Valid values are given in the table below. The feature’s low level function is

sio4_hdlc_t_usc_tx_txc_legacy().

Value Description

SIO4_HDLC_USC_TX_TXC_LEG_IN The pin operates as an input. *

SIO4_HDLC_USC_TX_TXC_LEG_OUT_BRG0 The pin is an output driven from

Baud Rate Generator 0.

SIO4_HDLC_USC_TX_TXC_LEG_OUT_BRG1 The pin is an output driven from

Baud Rate Generator 1.

SIO4_HDLC_USC_TX_TXC_LEG_OUT_BYTE_CLK The pin is an output driven from the

transmitter’s Byte Clock.

SIO4_HDLC_USC_TX_TXC_LEG_OUT_CLK The pin is an output driven from the

transmit clock.

SIO4_HDLC_USC_TX_TXC_LEG_OUT_COMP The pin is an output driven from the

transmit complete signal.

SIO4_HDLC_USC_TX_TXC_LEG_OUT_CTR1 The pin is an output driven from

Counter 1.

SIO4_HDLC_USC_TX_TXC_LEG_OUT_DPLL_TX The pin is an output driven from the

transmit clock from the DPLL.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

rx

This structure configures a few of the USC’s receiver settings.

usc.

rx.

clk_src

This field configures the source for the USC receiver clock. Valid values are given in the table

below. The feature’s low level function is sio4_hdlc_t_usc_rx_clk_src().

Value Description

SIO4_HDLC_USC_RX_CLK_SRC_BRG0 Select Baud Rate Generator 0.

SIO4_HDLC_USC_RX_CLK_SRC_BRG1 Select Baud Rate Generator 1.

SIO4_HDLC_USC_RX_CLK_SRC_CTR0 Select Counter 0.

SIO4_HDLC_USC_RX_CLK_SRC_CTR1 Select Counter 1.

SIO4_HDLC_USC_RX_CLK_SRC_DISABLE Disable the receiver. *

SIO4_HDLC_USC_RX_CLK_SRC_DPLL Select the DPLL.

SIO4_HDLC_USC_RX_CLK_SRC_RXC_PIN Select the Rx Clock pin.

SIO4_HDLC_USC_RX_CLK_SRC_TXC_PIN Select the Tx Clock pin.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

rx.

rxc

This field configures the operation of the USC’s Rx Clock pin. Valid values are given in the table

below. The feature’s low level function is sio4_hdlc_t_usc_rx_rxc().

Value Description

SIO4_HDLC_USC_RX_RXC_IN_0 The pin is an input driven low. *

SIO4_HDLC_USC_RX_RXC_IN_1 The pin is an input driven high.

SIO4_HDLC_USC_RX_RXC_IN_CBL_RXAUX The pin is an input driven from the cable’s

Rx Aux signal.

SIO4_HDLC_USC_RX_RXC_IN_CBL_RXC The pin is an input driven from the cable’s

Rx Clock signal.

SIO4_HDLC_USC_RX_RXC_IN_OSC The pin is an input driven from the

onboard oscillator.

SIO4_HDLC_USC_RX_RXC_IN_OSC_INV The pin is an input driven from the

inverted onboard oscillator.

SIO4_HDLC_USC_RX_RXC_OUT_BRG0 The pin is an output driven from Baud

Rate Generator 0.

SIO4_HDLC_USC_RX_RXC_OUT_BRG1 The pin is an output driven from Baud

Rate Generator 1.

SIO4_HDLC_USC_RX_RXC_OUT_BYTE_CLK The pin is an output driven from the

SIO4/8, HDLC Protocol Library, Reference Manual

41

General Standards Corporation, Phone: (256) 880-8787

receiver’s Byte Clock.

SIO4_HDLC_USC_RX_RXC_OUT_CLK The pin is an output driven from the

receiver clock.

SIO4_HDLC_USC_RX_RXC_OUT_CTR0 The pin is an output driven from Counter

0.

SIO4_HDLC_USC_RX_RXC_OUT_DPLL_RX The pin is an output driven from the

receive clock from the DPLL.

SIO4_HDLC_USC_RX_RXC_OUT_SYNC The pin is an output driven from input

SYNC signal.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

rx.

rxc_legacy

This field configures the operation of the USC’s Rx Clock pin for legacy mode cable interface

configurations. Valid values are given in the table below. The feature’s low level function is

sio4_hdlc_t_usc_rx_rxc_legacy().

Value Description

SIO4_HDLC_USC_RX_RXC_LEG_IN The pin is an input. *

SIO4_HDLC_USC_RX_RXC_LEG_OUT_BRG0 The pin is an output driven from

Baud Rate Generator 0.

SIO4_HDLC_USC_RX_RXC_LEG_OUT_BRG1 The pin is an output driven from

Baud Rate Generator 1.

SIO4_HDLC_USC_RX_RXC_LEG_OUT_BYTE_CLK The pin is an output driven from the

receiver’s Byte Clock.

SIO4_HDLC_USC_RX_RXC_LEG_OUT_CLK The pin is an output driven from the

receiver clock.

SIO4_HDLC_USC_RX_RXC_LEG_OUT_CTR0 The pin is an output driven from

Counter 0.

SIO4_HDLC_USC_RX_RXC_LEG_OUT_DPLL_RX The pin is an output driven from the

receive clock from the DPLL.

SIO4_HDLC_USC_RX_RXC_LEG_OUT_SYNC The pin is an output driven from

input SYNC signal.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

brg0

This structure configures a few of the settings for Baud Rate Generator 0 (BRG0).

usc.

brg0.

enable

This field enables or disabled BRG0. Valid values are given in the table below. The feature’s low

level function is sio4_hdlc_t_usc_brg0_enable().

Value Description

SIO4_HDLC_USC_BRG0_ENABLE_NO This disables BRG0. *

SIO4_HDLC_USC_BRG0_ENABLE_YES This enables BRG0.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

brg0.

clk_src

This field selects the clock source for BRG0. Valid values are given in the table below. The

feature’s low level function is sio4_hdlc_t_usc_brg0_clk_src().

Value Description

SIO4_HDLC_USC_BRG0_CLK_SRC_CTR0 This selects the output from Counter 0. *

SIO4_HDLC_USC_BRG0_CLK_SRC_CTR1 This selects the output from Counter 1.

SIO4_HDLC_USC_BRG0_CLK_SRC_RXC_PIN This selects the signal present at the

USC’s Rx Clock pin.

SIO4_HDLC_USC_BRG0_CLK_SRC_TXC_PIN This selects the signal present at the

USC’s Tx Clock pin.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

brg0.

divider

This field specifies the clock divider value for BRG0. The valid value range is from zero to

0xFFFF. The initial default is zero, though it may change to satisfy bit rate requirements. The

feature’s low level function is sio4_hdlc_t_usc_brg0_divider().

SIO4/8, HDLC Protocol Library, Reference Manual

42

General Standards Corporation, Phone: (256) 880-8787

usc.

brg0.

mode

This field specifies the BRG0 operating mode. Valid values are given in the table below. The

feature’s low level function is sio4_hdlc_t_usc_brg0_mode().

Value Description

SIO4_HDLC_USC_BRG0_MODE_CONT This selects continuous operation. This is the

default.

SIO4_HDLC_USC_BRG0_MODE_SINGLE This selects single shot mode, in which

clocking stops when the counter value reaches

zero.

usc.

brg1

This structure configures a few of the settings for Baud Rate Generator 1 (BRG1).

usc.

brg1.

enable

This field enables or disabled BRG1. Valid values are given in the table below. The feature’s low

level function is sio4_hdlc_t_usc_brg1_enable().

Value Description

SIO4_HDLC_USC_BRG1_ENABLE_NO This disables BRG1. *

SIO4_HDLC_USC_BRG1_ENABLE_YES This enables BRG1.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

brg1.

clk_src

This field selects the clock source for BRG1. Valid values are given in the table below. The

feature’s low level function is sio4_hdlc_t_usc_brg1_clk_src().

Value Description

SIO4_HDLC_USC_BRG1_CLK_SRC_CTR0 This selects the output from Counter 0. *

SIO4_HDLC_USC_BRG1_CLK_SRC_CTR1 This selects the output from Counter 1.

SIO4_HDLC_USC_BRG1_CLK_SRC_RXC_PIN This selects the signal present at the

USC’s Rx Clock pin.

SIO4_HDLC_USC_BRG1_CLK_SRC_TXC_PIN This selects the signal present at the

USC’s Tx Clock pin.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

brg1.

divider

This field specifies the clock divider value for BRG1. The valid value range is from zero to

0xFFFF. The initial default is zero, though it may change to satisfy bit rate requirements. The

feature’s low level function is sio4_hdlc_t_usc_brg1_divider().

usc.

brg1.

mode

This field specifies the BRG1 operating mode. Valid values are given in the table below. The

feature’s low level function is sio4_hdlc_t_usc_brg1_mode().

Value Description

SIO4_HDLC_USC_BRG1_MODE_CONT This selects continuous operation. This is the

default.

SIO4_HDLC_USC_BRG1_MODE_SINGLE This selects single shot mode, in which

clocking stops when the counter value reaches

zero.

usc.

ctr0

This structure configures a few of the settings for Counter 0 (CTR0).

usc.

ctr0.

clk_src

This field selects the clock source for CTR0. Valid values are given in the table below. The

feature’s low level function is sio4_hdlc_t_usc_ctr0_clk_src().

Value Description

SIO4_HDLC_USC_CTR0_CLK_SRC_DISABLE This disables CTR0. *

SIO4_HDLC_USC_CTR0_CLK_SRC_RXC_PIN This selects the signal present at the

USC’s Rx Clock pin.

SIO4_HDLC_USC_CTR0_CLK_SRC_TXC_PIN This selects the signal present at the

USC’s Tx Clock pin.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

ctr0.

This field selects the divider rate for CTR0. Valid values are given in the table below. The

SIO4/8, HDLC Protocol Library, Reference Manual

43

General Standards Corporation, Phone: (256) 880-8787

rate feature’s low level function is sio4_hdlc_t_usc_ctr0_rate().

Value Description

SIO4_HDLC_USC_CTR0_RATE_4X This sets the output as the input divided by four. *

SIO4_HDLC_USC_CTR0_RATE_8X This sets the output as the input divided by eight.

SIO4_HDLC_USC_CTR0_RATE_16X This sets the output as the input divided by 16.

SIO4_HDLC_USC_CTR0_RATE_32X This sets the output as the input divided by 32.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

ctr1

This structure configures a few of the settings for Counter 1 (CTR1).

usc.

ctr1.

clk_src

This field selects the clock source for CTR1. Valid values are given in the table below. The

feature’s low level function is sio4_hdlc_t_usc_ctr1_clk_src().

Value Description

SIO4_HDLC_USC_CTR1_CLK_SRC_DISABLE This disables CTR1. *

SIO4_HDLC_USC_CTR1_CLK_SRC_RXC_PIN This selects the signal present at the

USC’s Rx Clock pin.

SIO4_HDLC_USC_CTR1_CLK_SRC_TXC_PIN This selects the signal present at the

USC’s Tx Clock pin.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

ctr1.

rate_src

This field selects the source for the rate divider used by CTR1. Valid values are given in the table

below. The feature’s low level function is sio4_hdlc_t_usc_ctr1_rate_src().

Value Description

SIO4_HDLC_USC_CTR1_RATE_SRC_CTR0 This selects the rate divider used by CTR0.

*

SIO4_HDLC_USC_CTR1_RATE_SRC_DPLL This selects the rate divider used by the

DPLL.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

dpll

This structure configures a few of the settings for the DPLL.

usc.

dpll.

clk_src

This field selects the clock source for the DPLL. Valid values are given in the table below. The

feature’s low level function is sio4_hdlc_t_usc_dpll_clk_src().

Value Description

SIO4_HDLC_USC_DPLL_CLK_SRC_BRG0 This selects the output from BRG0. *

SIO4_HDLC_USC_DPLL_CLK_SRC_BRG1 This selects the output from BRG1.

SIO4_HDLC_USC_DPLL_CLK_SRC_RXC_PIN This selects the signal present at the

USC’s Rx Clock pin.

SIO4_HDLC_USC_DPLL_CLK_SRC_TXC_PIN This selects the signal present at the

USC’s Tx Clock pin.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

dpll.

mode

This field specifies the DPLL operating mode, which corresponds to the Rx Data Encoding

format. Valid values are given in the table below. The feature’s low level function is

sio4_hdlc_t_usc_dpll_mode().

Value Description

SIO4_HDLC_USC_DPLL_MODE_BIPH_LVL This refers to Biphase-Level.

SIO4_HDLC_USC_DPLL_MODE_BIPH_MS This refers to either Biphase-Mark or

Biphase Space.

SIO4_HDLC_USC_DPLL_MODE_DISABLE This disables the DPLL. *

SIO4_HDLC_USC_DPLL_MODE_NRZ_NRZI This refers to either NRZ or NRZI.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

dpll.

This field selects the divider rate for the DPLL. Valid values are given in the table below. The

SIO4/8, HDLC Protocol Library, Reference Manual

44

General Standards Corporation, Phone: (256) 880-8787

rate feature’s low level function is sio4_hdlc_t_usc_dpll_rate().

Value Description

SIO4_HDLC_USC_DPLL_RATE_CTR1_4X This option cannot be used if the DPLL is

utilized. This is a divide by four option, but

can be selected only if the DPLL is the

source for CTR1’s rate divider value.

SIO4_HDLC_USC_DPLL_RATE_8X This sets the output as the input divided by

eight. *

SIO4_HDLC_USC_DPLL_RATE_16X This sets the output as the input divided by

16.

SIO4_HDLC_USC_DPLL_RATE_32X This sets the output as the input divided by

32.

* This is the initial default, though it may change to satisfy bit rate requirements.

usc.

dpll.

edge

This field selects the source signal edges that the DPLL uses for synchronization. Valid values

are given in the table below. The feature’s low level function is

sio4_hdlc_t_usc_dpll_edge().

Value Description

SIO4_HDLC_USC_DPLL_EDGE_BOTH_EDGE This selects both rising and falling edges

that the DPLL is to use for clocking

synchronization.

SIO4_HDLC_USC_DPLL_EDGE_FALL_EDGE This selects the falling edges that the

DPLL is to use for clocking

synchronization.

SIO4_HDLC_USC_DPLL_EDGE_INHIBIT This inhibits the DPLL from

synchronizing on the input clock. *

SIO4_HDLC_USC_DPLL_EDGE_RISE_EDGE This selects the rising edges that the

DPLL is to use for clocking

synchronization.

* This is the initial default, though it may change to satisfy bit rate requirements.

SIO4/8, HDLC Protocol Library, Reference Manual

45

General Standards Corporation, Phone: (256) 880-8787

4. Operation

This section is intended to provide limited information on the operation of the board and/or the HDLC Protocol

Library.

4.1. Basic Illustration

The below figure is included to assist individuals in the configuration of the SIO4. The figure illustrates boards with

more recent firmware. The DMA references are handled automatically by the driver to facilitate movement of data

between the USC and the on-board FIFOs.

Tx FIFO
Oscillator Inv

RxClk
0
1

TxClk

0
1

CTS

DCD

RTS0
1

AF

DCD
0
1

AuxC
0
1

TxD0
1

TxD

RxD

RxD

RxC

TxC

0
1

Rx

Tx

CTS

HiZ

HiZ

HiZ

Rx FIFO

CTR0

CTR1

TxC

RxC

Disable

BRG1

BRG0

DPLL

T
x
C

lk
R

x
C

lk

Dis

Tx

Rx

32/16/8/4

CTR0/DPLL

32/16/8(/4)

CTS

Tx
CTS

Rx
DCDDCD

D/S

TxDTxD

HiZ
TxCC TxC

RxCC RxS

USC

RxDRxD

Data

Data

0
1

0
1

TxRMode TxAMode

(DMA)

RxRMode RxAMode

(DMA)

Cable

DCE/DTE/

Legacy

Transceivers

Loopback Int/Ext

Disable
SC/Cont

SC/Cont

En/Disable

En/Disable

Disable

H/L/B/N

0
1

Auto Echo

Dis

SIO4B and later

Enable/Disable

Enable/Disable

DTR/

DST0
1

HiZ

RTS

RTS

Figure 2 A functional illustration of an SIO4B or later model board. (See sio4_zilog.pdf.)

4.2. Clocking Configurations

The function sio4_hdlc_init() initializes the USC clocking section of the sio4_hdlc_t structure based on

the content of the sio4_hdlc_init_t structure. The basic configuration results are shown below. In all cases,

unused USC clocking components are disabled. The following illustrations are for SIO4B or later model boards. The

figures are also representative of SIO4A model boards, except that the SIO4A has lower capabilities for routing

signals between the USC and the cable interface. The figures are also somewhat representative of the basic SIO4

model boards, except that the basic SIO4 boards use jumpers for routing signals between the USC and the cable

interface. (The basic SIO4 model boards are limited to the legacy mode cable configuration feature.) The yellow

dashed lines in the below figures are potential clock routing options. One goal of these configurations is to have the

transmitter clock appear at the cable interface as the Tx Clock signal. This is done either by routing the transmitter

clock to the cable Tx Clock signal directly, or by programming the onboard oscillator to the Tx Bit Rate and feeding

the oscillator output to the cable Tx Clock signal. When programmable oscillator is the cable Tx Clock source, it is

the application’s responsibility to program the oscillator to the Tx Bit rate. The following sections present simple

examples of four basic cable configuration options. If there is too much disparity between the Tx Bit Rate and the

Rx Bit Rate, then data reception and transmission may have be occur on different channels.

SIO4/8, HDLC Protocol Library, Reference Manual

46

General Standards Corporation, Phone: (256) 880-8787

4.2.1. Tx Bit Rate == Rx Bit Rate, Cable Rx Clock Used

In this example the receiver’s clock comes in over the cable’s Rx Clock signal, and the transmitter and the receiver

use the same bit rate. This configuration permits the actual transmitter clock to be routed to the cable’s Tx Clock

signal. This signal routing is illustrated in Figure 3. The code extract below demonstrates the minimum coding for

this example configuration. Error checking is omitted for brevity.

void config_sample(int fd)

{

 const char* err = NULL;

 sio4_hdlc_t hdlc;

 sio4_hdlc_init_t init;

 init.tx_bit_rate = 1000000L;

 init.rx_bit_rate = 1000000L;

 init.rx_uses_cbl_rxc = SIO4_HDLC_RX_USES_CBL_RXC_YES;

init.osc_prog = 20000000L;

 sio4_hdlc_init(fd, &init, &hdlc, &err);

 sio4_hdlc_set(fd, &hdlc, &err);

}

Tx FIFO
Oscillator Inv

RxClk
0
1

TxClk

0
1

CTS

DCD

RTS
0
1

AF

DCD
0
1

AuxC
0
1

TxD0
1

TxD

RxD

RxD

RxC

TxC

0
1

Rx

Tx

CTS

HiZ

HiZ

HiZ

Rx FIFO

CTR0

CTR1

TxC

RxC

Disable

BRG1

BRG0

DPLL

T
x
C

lk
R

x
C

lk

Dis

Tx

Rx

32/16/8/4

CTR0/DPLL

32/16/8(/4)

CTS

Tx
CTS

Rx
DCDDCD

D/S

TxDTxD

HiZ
TxCC TxC

RxCC RxS

USC

RxDRxD

Data

Data

0
1

0
1

TxRMode TxAMode

(DMA)

RxRMode RxAMode

(DMA)

Cable

DCE/DTE/

Legacy

Transceivers

Loopback Int/Ext

Disable
SC/Cont

SC/Cont

En/Disable

En/Disable

Disable

H/L/B/N

0
1

Auto Echo

Dis

SIO4B and later

Enable/Disable

Enable/Disable

DTR/

DST0
1

HiZ

RTS

RTS

Figure 3 This illustrates the clock routing produced when the receiver gets its clock from the cable’s Rx Clock

signal, and when the receiver and the transmitter use the same bit rate. In this case the transmitter clock appears at

the cable’s Tx Clock signal.

SIO4/8, HDLC Protocol Library, Reference Manual

47

General Standards Corporation, Phone: (256) 880-8787

4.2.2. Tx Bit Rate != Rx Bit Rate, Cable Rx Clock Used

In this example the receiver’s clock comes in over the cable’s Rx Clock signal, but the transmitter and the receiver

use different bit rates. This configuration does not permit the actual transmitter clock to be routed to the cable’s Tx

Clock signal. The substitute for this is to program the onboard oscillator to the Tx Bit Rate and route the oscillator

output to the cable’s Tx Clock signal. This signal routing is illustrated in Figure 4. The code extract below

demonstrates the minimum coding for this example configuration. Error checking is omitted for brevity.

void config_sample(int fd)

{

 const char* err = NULL;

 sio4_hdlc_t hdlc;

 sio4_hdlc_init_t init;

 init.tx_bit_rate = 800000L;

 init.rx_bit_rate = 1000000L;

 init.rx_uses_cbl_rxc = SIO4_HDLC_RX_USES_CBL_RXC_YES;

init.osc_prog = 800000L;

 sio4_hdlc_init(fd, &init, &hdlc, &err);

 sio4_hdlc_set(fd, &hdlc, &err);

}

Tx FIFO
Oscillator Inv

RxClk
0
1

TxClk

0
1

CTS

DCD

RTS0
1

AF

DCD
0
1

AuxC
0
1

TxD0
1

TxD

RxD

RxD

RxC

TxC

0
1

Rx

Tx

CTS

HiZ

HiZ

HiZ

Rx FIFO

CTR0

CTR1

TxC

RxC

Disable

BRG1

BRG0

DPLL

T
x
C

lk
R

x
C

lk

Dis

Tx

Rx

32/16/8/4

CTR0/DPLL

32/16/8(/4)

CTS

Tx
CTS

Rx
DCDDCD

D/S

TxDTxD

HiZ
TxCC TxC

RxCC RxS

USC

RxDRxD

Data

Data

0
1

0
1

TxRMode TxAMode

(DMA)

RxRMode RxAMode

(DMA)

Cable

DCE/DTE/

Legacy

Transceivers

Loopback Int/Ext

Disable
SC/Cont

SC/Cont

En/Disable

En/Disable

Disable

H/L/B/N

0
1

Auto Echo

Dis

SIO4B and later

Enable/Disable

Enable/Disable

DTR/

DST0
1

HiZ

RTS

RTS

Figure 4 This illustrates the clock routing produced when the receiver gets its clock from the cable’s Rx Clock

signal, but when the receiver and the transmitter use different bit rates. In this case the oscillator output, which can

be programmed to the Tx bit rate, appears at the cable interface as the Tx Clock signal.

SIO4/8, HDLC Protocol Library, Reference Manual

48

General Standards Corporation, Phone: (256) 880-8787

4.2.3. Cable Rx Clock Not Used

In this case, the receive clock is derived by the DPLL while the transmit clock is derived from the programmable

oscillator. This configuration permits the actual transmitter clock to be routed to the cable’s Tx Clock signal. This

signal routing is illustrated in Figure 5. The code extract below demonstrates the minimum coding for this example

configuration. Error checking is omitted for brevity. For the best possible bit rate matching, the programmed

oscillator frequency must be chosen so that the USC clocking logic can produce both a matching transmit clock bit

rate and a clock rate for the DPLL that is eight, 16 or 32 times the desired receive bit rate. The bit rates produced are

reported by the sio4_hdlc_init() call. These resulting bit rates should be examined to insure they are suitable.

void config_sample(int fd)

{

 const char* err = NULL;

 sio4_hdlc_t hdlc;

 sio4_hdlc_init_t init;

 init.tx_bit_rate = 1000000L;

 init.rx_bit_rate = 1000000L;

 init.rx_uses_cbl_rxc = SIO4_HDLC_RX_USES_CBL_RXC_NO;

init.osc_prog = 20000000L;

 sio4_hdlc_init(fd, &init, &hdlc, &err);

 sio4_hdlc_set(fd, &hdlc, &err);

}

Tx FIFO
Oscillator Inv

RxClk
0
1

TxClk

0
1

CTS

DCD

RTS0
1

AF

DCD
0
1

AuxC
0
1

TxD0
1

TxD

RxD

RxD

RxC

TxC

0
1

Rx

Tx

CTS

HiZ

HiZ

HiZ

Rx FIFO

CTR0

CTR1

TxC

RxC

Disable

BRG1

BRG0

DPLL

T
x
C

lk
R

x
C

lk

Dis

Tx

Rx

32/16/8/4

CTR0/DPLL

32/16/8(/4)

CTS

Tx
CTS

Rx
DCDDCD

D/S

TxDTxD

HiZ
TxCC TxC

RxCC RxS

USC

RxDRxD

Data

Data

0
1

0
1

TxRMode TxAMode

(DMA)

RxRMode RxAMode

(DMA)

Cable

DCE/DTE/

Legacy

Transceivers

Loopback Int/Ext

Disable
SC/Cont

SC/Cont

En/Disable

En/Disable

Disable

H/L/B/N

0
1

Auto Echo

Dis

SIO4B and later

Enable/Disable

Enable/Disable

DTR/

DST0
1

HiZ

RTS

RTS

Figure 5 This illustrates the clock routing produced when the receiver derives its clock from the DPLL, and when

the receiver and the transmitter use different bit rates. In this case the transmitter clock appears at the cable’s Tx

Clock signal.

SIO4/8, HDLC Protocol Library, Reference Manual

49

General Standards Corporation, Phone: (256) 880-8787

4.3. Error and Status Detection

The serial controller used on the SIO4 incorporates the ability to detect a number of error and other conditions for

both the transmit and the receive data streams.

4.3.1. Interrupt Events

The most efficient means of detecting the various conditions, especially errors, is by use of interrupts. The basic

steps for this are to enable the interrupts of interest then have a thread wait for a corresponding interrupt event. (See

the Interrupt and the Wait Event services in the driver reference manual.) This is illustrated in the following code

fragments.

Thread A Thread B

For (;;)

{

 …

 read SIO4 data

 if (error recorded)

 {

 Error exists in

1) Read buffer, or
2) SIO4 Rx FIFO
Resync data stream.

 }

 else

 {

 Read buffer is error free.

 }

 …

}

For (;;)

{

 …

 Enable desired interrupts.

 Wait for an interrupt.

 if (error interrupt occurred)

 {

 Record the error.

 }

 …

}

4.3.2. Rx Status Word

The SIO4 can also provide status in the Rx data stream on a per byte basis. This is done by enabling the Rx Status

Word feature (sio4_hdlc_t.rx.status_word, section 3.3.1.4, page 33). When enabled, the SIO4 places the

lower eight bits of the USC’s Receive Command/Status Register in the Rx FIFO immediately after the data itself.

This allows an application to identity the precise location in the data stream where some Rx related conditions

occurr. The downside of this is that it doubles the volume of data going through the Rx FIFO and effectively reduces

its size by 1/2. Refer to the Z16C30 Data Handbook for information on the USC’s Receive Command/Status

Register.

4.4. Debugging Aids

The SIO4 driver archive includes two debugging aids appropriate for use with the HDLC Protocol Library. The aids

are described below.

4.4.1. sio4_hdlc_show()

The function sio4_hdlc_show() (section 3.1.9, page 13) is part of the protocol library interface. The purpose of

the function is to produce a human readable report of all fields included in the sio4_hdlc_t structure (section

3.3.1, page 20) passed in as a function argument. The function is best used to report the structure’s content before it

is passed to sio4_hdlc_set() (section 3.1.8, page 13) or after it is passed to sio4_hdlc_get() (section

3.1.7, page 12). The output can be used with Figure 2 to help visualize the channel configuration reflected by the

structure content. When used in conjunction with sio4_hdlc_set(), the sio4_hdlc_show() output

SIO4/8, HDLC Protocol Library, Reference Manual

50

General Standards Corporation, Phone: (256) 880-8787

indicates the state that sio4_hdlc_set() is expected to produce. When used in conjunction with

sio4_hdlc_get(), the sio4_hdlc_show() output indicates the channel’s current state. This may be

beneficial after calling sio4_hdlc_set() in order to verify the results achieved. The pair of calls may also be

used before or after read() or write() calls in order to help explain the results of individual transfer requests.

4.4.2. sio4_reg_list()

The function sio4_reg_list() is included in the sio4 utility library. The purpose of the function is to report the

current content of registers for the referenced serial channel. The arguments control the set of registers included in

the output and the detail with which the register content is reported. This function can be called at any time to report

the device state, but it is most often called after completing board setup, or just before or after read() or

write() calls in order to help explain the results of individual transfer requests.

Prototype

int sio4_reg_list(int fd, int gsc, int gsc_detail,

 int usc, int usc_detail);

Argument Description

fd This is a file descriptor obtained by a call to sio4_hdlc_open().

gsc If non-zero, then the output will include a dump of all GSC_SIO4_xxx registers. Refer

to sio4.h for a complete list of these registers.

gsc_detail If non-zero, then the dump of the above registers will include detailed information about

all register fields, including the field value and the meaning of the value.

usc If non-zero, then the output will include a dump of all GSC_USC_xxx registers. Refer

to sio4.h for a complete list of these registers.

usc_detail If non-zero, then the dump of the above registers will include detailed information about

all register fields, including the field value and the meaning of the value.

Return Value Description

>= 0 This is the number of errors encountered during execution of the function.

4.5. Exclusions

4.5.1. Global Rx FIFO Full Configuration

The global Rx FIFO Full Configuration setting (see SIO4_IOCTL_RX_FIFO_FULL_CFG_GLB in sio4.h) is

not included as part of the HDLC Protocol Library. It is excluded because the setting can override the channel

specific settings for all four channels. If an application is to access this feature it must be done in parallel with use of

the HDLC Protocol Library.

SIO4/8, HDLC Protocol Library, Reference Manual

51

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

September 7, 2015 Updated to library release version 0.9.

December 9, 2014 Updated the current release date.

December 4, 2014 Updated to library release version 0.8. Added information on DCD configuration for both

the cable and the USC. Moved the data structure section into the previous section. Added

information on error and status detection.

May 17, 2014 Updated to library release version 0.7. The two clocking configuration options that required

the DPLL were replaced by a single option that derived the Rx Clock from the DPLL and

the Tx Clock from the onboard programmable oscillator.

April 16, 2014 Updated to library release version 0.6.

October 22, 2013 Updated to library release version 0.5.

October 15, 2013 Updated to library release version 0.4.

August 27, 2013 Initial library release, version 0.2, for the 2.x series driver.

