
HPDI32 
High Performance 32-bit Digital I/O 

PCI-HPDI32A 
PCI64-HPDI32AL 

PMC-HPDI32A 
PMC64-HPDI32ALT 

 

Software Development Kit 
SDK 6.1.0 Reference Manual 

Manual Revision: October 31, 2013 

Version 6.1.0 

General Standards Corporation 

8302A Whitesburg Drive 

Huntsville, AL 35802 

Phone: (256) 880-8787 

Fax: (256) 880-8788 

URL: http://www.generalstandards.com/ 

E-mail: sales@generalstandards.com 

E-mail: support@generalstandards.com 

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com


HPDI32, Software Development Kit 6.1.0, Reference Manual 

2 

General Standards Corporation, Phone: (256) 880-8787 
 

 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

3 

General Standards Corporation, Phone: (256) 880-8787 
 

Preface 

Copyright © 2008-2013, General Standards Corporation 

Additional copies of this manual or other literature may be obtained from: 

General Standards Corporation 

8302A Whitesburg Drive 

Huntsville, Alabama 35802 

Phone: (256) 880-8787 

FAX: (256) 880-8788 

URL: http://www.generalstandards.com/ 

E-mail: sales@generalstandards.com 

General Standards Corporation makes no warranty of any kind with regard to this material, including, but not 

limited to, the implied warranties of merchantability and fitness for a particular purpose. Although extensive editing 

and reviews are performed before release to ECO control, General Standards Corporation assumes no 

responsibility for any errors that may exist in this document. No commitment is made to update or keep current the 

information contained in this document. 

General Standards Corporation does not assume any liability arising out of the application or use of any product 

or circuit described herein, nor is any license conveyed under any patent rights or any rights of others. 

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or 

errors in this manual or from the use of information contained herein. 

General Standards Corporation reserves the right to make any changes, without notice, to this product to improve 

reliability, performance, function, or design. 

ALL RIGHTS RESERVED. 

The Purchaser of this software may use or modify in source form the subject software, but not to re-market or 

distribute it to outside agencies or separate internal company divisions. The software, however, may be embedded in 

the Purchaser’s distributed software. In the event the Purchaser’s customers require the software source code, then 

they would have to purchase their own copy of the software. 

General Standards Corporation makes no warranty of any kind with regard to this software, including, but not 

limited to, the implied warranties of merchantability and fitness for a particular purpose and makes this software 

available solely on an “as-is” basis. General Standards Corporation reserves the right to make changes in this 

software without reservation and without notification to its users. 

The information in this document is subject to change without notice. This document may be copied or reproduced 

provided it is in support of products from General Standards Corporation. For any other use, no part of this 

document may be copied or reproduced in any form or by any means without prior written consent of General 

Standards Corporation. 

GSC is a trademark of General Standards Corporation. 

PLX and PLX Technology are trademarks of PLX Technology, Inc. 

 

http://www.generalstandards.com/
mailto:sales@generalstandards.com


HPDI32, Software Development Kit 6.1.0, Reference Manual 

4 

General Standards Corporation, Phone: (256) 880-8787 
 

Table of Contents 

1. Introduction ............................................................................................................................... 9 

1.1. Purpose .............................................................................................................................................................. 9 

1.2. Acronyms ........................................................................................................................................................... 9 

1.3. Definitions .......................................................................................................................................................... 9 

1.4. Installation ......................................................................................................................................................... 9 

1.5. Application Programming Interface ............................................................................................................. 10 

1.6. Software Overview .......................................................................................................................................... 10 
1.6.1. Software Architecture ................................................................................................................................. 11 

1.7. Hardware Overview ........................................................................................................................................ 11 

1.8. Code Samples .................................................................................................................................................. 11 

1.9. Performance Factors ...................................................................................................................................... 11 

1.10. Reference Material ........................................................................................................................................ 12 

2. Operation ................................................................................................................................. 13 

2.1. Transmitter Operation ................................................................................................................................... 13 
2.1.1. Data Organization ....................................................................................................................................... 14 
2.1.2. Cable Signals - continuous unstructured data stream ................................................................................. 14 

2.1.2.1. Tx Clock .............................................................................................................................................. 15 
2.1.2.2. Tx Data ................................................................................................................................................ 15 
2.1.2.3. Tx Enabled ........................................................................................................................................... 16 
2.1.2.4. Tx Ready .............................................................................................................................................. 16 
2.1.2.5. Frame Valid ......................................................................................................................................... 17 
2.1.2.6. Line Valid ............................................................................................................................................ 17 
2.1.2.7. Status Valid .......................................................................................................................................... 18 
2.1.2.8. Rx Ready .............................................................................................................................................. 18 

2.1.3. Control Options - continuous unstructured data stream ............................................................................. 19 
2.1.3.1. Enable .................................................................................................................................................. 19 
2.1.3.2. Auto Start ............................................................................................................................................. 19 
2.1.3.3. Auto Stop ............................................................................................................................................. 19 
2.1.3.4. Flow Control ........................................................................................................................................ 20 
2.1.3.5. Remote Throttle ................................................................................................................................... 20 
2.1.3.6. Tx Overrun ........................................................................................................................................... 20 
2.1.3.7. Tx/Rx Enabled Tri-State ...................................................................................................................... 20 

2.2. Transmitter Setup ........................................................................................................................................... 21 

2.3. Transmitter Configuration ............................................................................................................................. 21 

2.4. Receiver Operation ......................................................................................................................................... 22 
2.4.1. Data Organization ....................................................................................................................................... 22 
2.4.2. Cable Signals - continuous unstructured data stream ................................................................................. 23 

2.4.2.1. Rx Clock .............................................................................................................................................. 23 
2.4.2.2. Rx Data ................................................................................................................................................ 23 
2.4.2.3. Rx Enabled ........................................................................................................................................... 24 
2.4.2.4. Frame Valid ......................................................................................................................................... 24 
2.4.2.5. Line Valid ............................................................................................................................................ 25 
2.4.2.6. Status Valid .......................................................................................................................................... 25 
2.4.2.7. Rx Ready .............................................................................................................................................. 26 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

5 

General Standards Corporation, Phone: (256) 880-8787 
 

2.4.3. Control Options - continuous unstructured data stream ............................................................................. 26 
2.4.3.1. Enable .................................................................................................................................................. 26 
2.4.3.2. Rx Overrun .......................................................................................................................................... 27 
2.4.3.3. Rx Under Run ...................................................................................................................................... 27 
2.4.3.4. Tx/Rx Enabled Tri-State ...................................................................................................................... 27 

2.5. Receiver Setup ................................................................................................................................................. 27 

2.6. Receiver Configuration................................................................................................................................... 28 

2.7. Data Transfer Issues ....................................................................................................................................... 28 
2.7.1. Tx vs. Rx Defaults ...................................................................................................................................... 28 
2.7.2. I/O Abort Requests ..................................................................................................................................... 28 
2.7.3. I/O Data Buffers ......................................................................................................................................... 28 
2.7.4. General DMA Parameters .......................................................................................................................... 29 
2.7.5. DMA Based I/O Requests .......................................................................................................................... 30 
2.7.6. PIO Threshold ............................................................................................................................................ 30 
2.7.7. I/O Timeout ................................................................................................................................................ 30 
2.7.8. I/O Data Transfer Modes ............................................................................................................................ 31 

2.7.8.1. DMA (Manual) .................................................................................................................................... 31 
2.7.8.2. Demand Mode DMA ........................................................................................................................... 32 

2.7.9. FIFO Almost Levels ................................................................................................................................... 32 
2.7.10. Flow Control ............................................................................................................................................. 33 
2.7.11. Direct Register Access.............................................................................................................................. 33 

2.8. Event Notification ........................................................................................................................................... 33 
2.8.1. Event Callback............................................................................................................................................ 33 

2.8.1.1. Interrupt Notification Callback ............................................................................................................ 34 
2.8.1.2. I/O Completion Notification Callback ................................................................................................. 34 

2.8.2. Event Waiting ............................................................................................................................................. 34 

3. Macros ...................................................................................................................................... 35 

3.1. API Version Number ...................................................................................................................................... 35 

3.2. Common Parameter Assignment Values ...................................................................................................... 35 

3.3. Discrete Data Type Options ........................................................................................................................... 36 

3.4. I/O Status Fields .............................................................................................................................................. 37 

3.5. Maximum Number of Open Handles ............................................................................................................ 38 

3.6. Parameter Access “Which” Bits .................................................................................................................... 38 

3.7. Registers ........................................................................................................................................................... 40 
3.7.1. GSC Registers ............................................................................................................................................ 40 
3.7.2. PLX PCI9080 PCI Configuration Registers ............................................................................................... 40 
3.7.3. PLX PCI9080 Feature Set Registers ........................................................................................................... 40 
3.7.4. PLX PCI9656 PCI Configuration Registers ............................................................................................... 40 
3.7.5. PLX PCI9656 Feature Set Registers ........................................................................................................... 41 

3.8. Version Data Selectors .................................................................................................................................... 41 

4. Data Types ............................................................................................................................... 42 

4.1. Discrete Data Types ........................................................................................................................................ 42 

4.2. hpdi32_callback_func_t .................................................................................................................................. 42 

4.3. Status Values ................................................................................................................................................... 42 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

6 

General Standards Corporation, Phone: (256) 880-8787 
 

5. Functions .................................................................................................................................. 44 

5.1. hpdi32_api_status() ......................................................................................................................................... 44 

5.2. hpdi32_board_count() .................................................................................................................................... 45 

5.3. hpdi32_close() .................................................................................................................................................. 46 

5.4. hpdi32_config() ................................................................................................................................................ 46 

5.5. hpdi32_gpio_mod() ......................................................................................................................................... 48 

5.6. hpdi32_gpio_read() ......................................................................................................................................... 49 

5.7. hpdi32_gpio_write() ........................................................................................................................................ 50 

5.8. hpdi32_init() .................................................................................................................................................... 50 

5.9. hpdi32_io_wait() .............................................................................................................................................. 51 

5.10. hpdi32_irq_wait() .......................................................................................................................................... 52 

5.11. hpdi32_open() ................................................................................................................................................ 54 

5.12. hpdi32_read() ................................................................................................................................................ 55 

5.13. hpdi32_reg_mod() ......................................................................................................................................... 57 

5.14. hpdi32_reg_read() ......................................................................................................................................... 58 

5.15. hpdi32_reg_write() ........................................................................................................................................ 58 

5.16. hpdi32_reset() ................................................................................................................................................ 59 

5.17. hpdi32_status_text() ...................................................................................................................................... 60 

5.18. hpdi32_version_get() ..................................................................................................................................... 61 

5.19. hpdi32_write() ............................................................................................................................................... 62 

6. Configuration Parameters ...................................................................................................... 65 

6.1. Parameter Macros .......................................................................................................................................... 65 
6.1.1. Parameter Definitions ................................................................................................................................. 65 
6.1.2. Value Definitions ........................................................................................................................................ 65 
6.1.3. Service Definitions ..................................................................................................................................... 65 

6.1.3.1. Device Handle: h .................................................................................................................................. 65 
6.1.3.2. Which Bits: w ...................................................................................................................................... 66 
6.1.3.3. Set Value: s .......................................................................................................................................... 66 
6.1.3.4. Get Value: g ......................................................................................................................................... 66 

6.2. Cable Parameters ............................................................................................................................................ 66 
6.2.1. Cable Parameter: Clock State ..................................................................................................................... 66 
6.2.2. Cable Parameter: Command Mode ............................................................................................................. 67 
6.2.3. Cable Parameter: Command State .............................................................................................................. 67 

6.3. FIFO Parameters ............................................................................................................................................ 68 
6.3.1. FIFO Parameter: Almost Level .................................................................................................................. 68 
6.3.2. FIFO Parameter: Reset ............................................................................................................................... 69 
6.3.3. FIFO Parameter: Size ................................................................................................................................. 70 
6.3.4. FIFO Parameter: Status .............................................................................................................................. 70 
6.3.5. FIFO Parameter: Transfer Size ................................................................................................................... 70 

6.4. I/O Parameters ................................................................................................................................................ 71 
6.4.1. I/O Parameter: Abort .................................................................................................................................. 72 
6.4.2. I/O Parameter: Aborted .............................................................................................................................. 72 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

7 

General Standards Corporation, Phone: (256) 880-8787 
 

6.4.3. I/O Parameter: Buffer Pointer ..................................................................................................................... 73 
6.4.4. I/O Parameter: Buffer Size ......................................................................................................................... 73 
6.4.5. I/O Parameter: Callback Argument ............................................................................................................ 74 
6.4.6. I/O Parameter: Callback Function .............................................................................................................. 74 
6.4.7. I/O Parameter: Data Size ............................................................................................................................ 75 
6.4.8. I/O Parameter: DMA Channel Select ......................................................................................................... 75 
6.4.9. I/O Parameter: DMA Control Mode ........................................................................................................... 76 
6.4.10. I/O Parameter: DMA Priority ................................................................................................................... 77 
6.4.11. I/O Parameter: Mode ................................................................................................................................ 77 
6.4.12. I/O Parameter: Overlap Enable ................................................................................................................. 78 
6.4.13. I/O Parameter: PIO Threshold .................................................................................................................. 78 
6.4.14. I/O Parameter: Single Cycle ..................................................................................................................... 79 
6.4.15. I/O Parameter: Status ................................................................................................................................ 80 
6.4.16. I/O Parameter: Timeout ............................................................................................................................ 80 

6.5. Interrupt Parameters ...................................................................................................................................... 81 
6.5.1. Interrupt Parameter: Callback Argument .................................................................................................... 81 
6.5.2. Interrupt Parameter: Callback Function ...................................................................................................... 82 
6.5.3. Interrupt Parameter: Enable ........................................................................................................................ 82 
6.5.4. Interrupt Parameter: State ........................................................................................................................... 83 
6.5.5. Interrupt Parameter: Trigger Configuration ................................................................................................ 83 

6.6. Miscellaneous Parameters .............................................................................................................................. 84 
6.6.1. Miscellaneous Parameter: Board Jumpers .................................................................................................. 85 
6.6.2. Miscellaneous Parameter: Favor Tx ........................................................................................................... 85 
6.6.3. Miscellaneous Parameter: Features ............................................................................................................ 85 
6.6.4. Miscellaneous Parameter: GSC Register Mapping..................................................................................... 86 
6.6.5. Miscellaneous Parameter: GSC Register Mapping Pointer ........................................................................ 87 
6.6.6. Miscellaneous Parameter: PLX Register Mapping ..................................................................................... 87 
6.6.7. Miscellaneous Parameter: PCI Bus Width.................................................................................................. 88 
6.6.8. Miscellaneous Parameter: Strict Arguments ............................................................................................... 88 
6.6.9. Miscellaneous Parameter: Strict Configuration .......................................................................................... 88 
6.6.10. Miscellaneous Parameter: Tx/Rx Tri-State ............................................................................................... 89 

6.7. Receiver Parameters ....................................................................................................................................... 89 
6.7.1. Receiver Parameter: Rx Enable .................................................................................................................. 90 
6.7.2. Receiver Parameter: Rx Overrun ................................................................................................................ 90 
6.7.3. Receiver Parameter: Row Count ................................................................................................................ 90 
6.7.4. Receiver Parameter: State ........................................................................................................................... 91 
6.7.5. Receiver Parameter: Status Count .............................................................................................................. 91 
6.7.6. Receiver Parameter: Rx Under Run ........................................................................................................... 91 

6.8. Transmitter Parameters ................................................................................................................................. 92 
6.8.1. Transmitter Parameter: Auto Start .............................................................................................................. 92 
6.8.2. Transmitter Parameter: Auto Stop .............................................................................................................. 93 
6.8.3. Transmitter Parameter: Tx Clock Divider .................................................................................................. 93 
6.8.4. Transmitter Parameter: Tx Enable .............................................................................................................. 94 
6.8.5. Transmitter Parameter: Flow Control ......................................................................................................... 94 
6.8.6. Transmitter Parameter: Line Valid Off Count ............................................................................................ 95 
6.8.7. Transmitter Parameter: Line Valid On Count ............................................................................................. 95 
6.8.8. Transmitter Parameter: Tx Overrun ............................................................................................................ 96 
6.8.9. Transmitter Parameter: Remote Throttle .................................................................................................... 96 
6.8.10. Transmitter Parameter: Remote Throttle State ......................................................................................... 97 
6.8.11. Transmitter Parameter: Tx State ............................................................................................................... 97 
6.8.12. Transmitter Parameter: Status Valid Count .............................................................................................. 97 
6.8.13. Transmitter Parameter: Status Valid Mirror ............................................................................................. 98 

Document History ....................................................................................................................... 99 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

8 

General Standards Corporation, Phone: (256) 880-8787 
 

Table of Figures 

Figure 1 A depiction of the HPDI32 Transmitter. ....................................................................................................... 14 
Figure 2 A simple continuous unstructured data stream cable configuration. ............................................................. 15 
Figure 3 Tx Data is synchronized with Tx Clock. ....................................................................................................... 16 
Figure 4 The Tx Enabled signal reflects the transmitter enable state (default configuration). .................................... 16 
Figure 5 The Tx Ready signal reflects the Tx FIFO empty state. ................................................................................ 17 
Figure 6 The Frame Valid signal reflects the data transmission process. .................................................................... 17 
Figure 7 The Line Valid signal reflects valid transmit data being presented at the cable interface. ............................ 18 
Figure 8 The Status Valid signal reflects valid status data being presented at the cable interface. ............................. 18 
Figure 9 The receiving device can drive the Rx Ready signal to control data flow. ................................................... 19 
Figure 10 A depiction of the HPDI32 Receiver. .......................................................................................................... 22 
Figure 11 A simple continuous unstructured data stream cable configuration. ........................................................... 23 
Figure 12 Rx Data is synchronized with Rx Clock. ..................................................................................................... 24 
Figure 13 The Rx Enabled signal reflects the receiver enable state (default configuration). ...................................... 24 
Figure 14 The Frame Valid signal reflects the data reception process. ....................................................................... 25 
Figure 15 The Line Valid signal reflects valid transmit data being presented at the cable interface. .......................... 25 
Figure 16 The Status Valid signal reflects valid status data being presented at the cable interface. ........................... 26 
Figure 17 The receiver drives the Tx Ready signal to control data flow. .................................................................... 26 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

9 

General Standards Corporation, Phone: (256) 880-8787 
 

1. Introduction 

This reference manual applies to SDK release version 6.1.0. 

1.1. Purpose 

The purpose of this document is to describe the Application Programming Interface to the HPDI32 Software 

Development Kit. This software provides the interface between “Application Software” and the HPDI32 board. The 

interface provided by the SDK is based on the board’s functionality. 

1.2. Acronyms 

The following is a list of commonly occurring acronyms used throughout this document. 

Acronyms Description 

API Application Programming Interface (This is sometimes used synonymously with SDK or API 

Library.) 

DMA Direct Memory Access 

DMDMA Demand Mode DMA 

GPIO General Purpose Input/Output 

GSC General Standards Corporation 

PCI Peripheral Component Interconnect 

PIO Programmed I/O 

PMC PCI Mezzanine Card 

SDK Software Development Kit (This is sometimes used synonymously with API or API Library.) 

1.3. Definitions 

The following is a list of commonly occurring terms used throughout this document. 

Term Definition 

API Buffer A physically contiguous block of memory allocated via the API. 

API Library This refers to the library implementing the application level HPDI32 interface. (This is 

sometimes used synonymously with SDK or API.) 

Application This refers to user mode processes. 

Application 

Buffers 

These are memory buffers allocated and maintained entirely by the application, and which are 

used for reading data from and writing data to the HPDI32’s FIFOs. 

Device Driver This refers to the driver executable component of the HPDI32 driver package. 

Driver This refers to the device driver, which runs under control of the operating system. 

PLX This refers to the company PLX Technology, Inc., who is the supplier of the PCI bridge chip 

used on the HPDI32. 

Rx This is a general reference to the receiver portion of the board. This includes reception of data 

over the cable, either to the FIFOs or from GPIO, data I/O read operations from the receive 

FIFO, and any and all associated settings. 

Tx This is a general reference to the transmitter portion of the board. This includes transmission of 

data over the cable, either from the FIFOs or from GPIO, data I/O write operations to the 

transmit FIFO, and any and all associated settings. 

1.4. Installation 

Installation instructions for the SDK are provided in separate, operating system specific setup guides. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

10 

General Standards Corporation, Phone: (256) 880-8787 
 

1.5. Application Programming Interface 

The SDK API is defined in the four header files listed below. These C language headers are C++ compatible. The 

only header that need be included by HPDI32 applications is hpdi32_api.h. The API consists of macros, data 

types, function calls and parameter definitions. These are described in other sections of this document. The headers 

define numerous items in addition to those described in this document. These additional items are provided without 

documentation. All software components of the API begin with a prefix of HPDI32 or GSC (both appear with upper 

and lower case letters). The table below indicates where to look for any particular item’s definition. 

File Name Description 

hpdi32_api.h This header contains the bulk of the API, including function calls, data types and numerous 

macros. All items defined here include the prefix “HPDI32” or “hpdi32”. 

gsc_common.h This header contains status definitions, a few data type definitions and a variety of macros. 

All items defined here have a prefix of “GSC” or “gsc”. 

gsc_pci9080.h This header contains register definitions for the PCI9080, which is the PCI interface chip 

used on HPDI32s with 32-bit PCI interfaces. All items defined here have a prefix of “GSC” 

or “gsc” and include “9080”. 

gsc_pci9656.h This header contains register definitions for the PCI9656, which is the PCI interface chip 

used on HPDI32s with 64-bit PCI interfaces. All items defined here have a prefix of “GSC” 

or “gsc” and include “9656”. 

1.6. Software Overview 

The software interface to the HPDI32 consists of a Device Driver and an API Library; the primary components of 

the SDK. The Device Driver operates under control of the operating system and must be loaded and running in order 

to access any installed HPDI32 devices. The interface provided by the API Library is based on the board’s 

functionality and is organized around the HPDI32’s set of main hardware features. The general categories are as 

follows and permit access to and manipulation of virtually every feature available on the board. 

 General Access Services (API Status, Version Numbers, Board Count, Open, Close, …) 

 Cable Interface Configuration 

 FIFO Configuration 

 Data Input and Output Configuration 

 General Purpose Input and Output Configuration 

 Interrupt Configuration 

 Other Miscellaneous Configuration 

 Register read and write operations 

 Receiver Configuration 

 Transmitter Configuration 

All HPDI32 features are individually accessible via a generalized configuration service. For each parameter, as 

appropriate, the API includes a set of support macros. These include setting options (i.e. defaults and acceptable 

values), quick access retrieval macros, and quick access manipulation macros. All are described later in this 

document. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

11 

General Standards Corporation, Phone: (256) 880-8787 
 

1.6.1. Software Architecture 

An application communicates with an HPDI32 using the driver and library described briefly above. Any number of 

applications may make simultaneous use of the library and each use is totally independent, unless specifically 

designed to do otherwise. Each instance provides access to at most 32 different HPDI32 devices. The diagram below 

describes the components and how they fit together. 

Application 
 This is any application written to communicate with one or more HPDI32 devices using the 

driver and library provided in the SDK. 

    

API Library 
 This library presents an HPDI32 feature based interface to applications wishing to 

communicate with HPDI32 devices. 

    

Device Driver  The driver provides access to HPDI32 devices. 

    

HPDI32  This refers to any number of installed HPDI32 devices. 

NOTE: While multiple applications can gain access to the same device, this is discouraged since 

the driver maintains resources and settings per device rather than per application or device handle. 

1.7. Hardware Overview 

The HPDI32 is a high-performance 32-bit parallel digital I/O interface board. The host side connection is PCI based 

and is either 32-bit or 64-bit according to the model ordered. The external I/O interface varies per model ordered. 

The board is capable of transmitting or receiving data at up to 200 Mbytes per second over an external I/O interface, 

depending on the model ordered. Onboard transmit and receive FIFOs of up to 128k data values each, buffer transfer 

data between the PCI bus and the cable interface. This allows the HPDI32 to maintain maximum bursts on the cable 

interface (at least up to the depth of the FIFOs) independent of the PCI bus interface. The onboard FIFOs can also be 

used to buffer data between the cable interface and the PCI bus to maintain a sustained data throughput for real-time 

applications. 

The HPDI32 offers a half-duplex external I/O interface. The board can either transmit or receive data, but it cannot 

do both simultaneously. In addition to the 32 synchronous data I/O lines, the external interface includes a set of 

configurable flow control signals. Some of these can also be configured as discrete I/O. The board accommodates a 

wide range of applications. This range extends from sending or receiving relatively small blocks of data on demand, 

to sending or receiving large continuous streams of data for an extended period. Once a data link is established, the 

data is transferred to/from host memory by simply writing to or reading from the onboard FIFOs. The board has an 

advanced PCI interface engine, which provides for increased data throughput via DMA. 

NOTE: PCI form factor boards with a 32-bit PCI interface can be used interchangeably in 64-bit 

PCI slots, and vise-versa. However, the performance improvements associated with the 64-bit PCI 

interface can be achieved only when a 64-bit board is used in a 64-bit slot. 

1.8. Code Samples 

All of the code samples in this manual are included in the hpdi32_dsl library along with their C source files. The 

examples given are notably simplistic, but are provided to illustrate use rather than accomplishment of broader tasks. 

1.9. Performance Factors 

The HPDI32 is designed for high performance data transfer. In many instances the form factor, the cable clock rate 

and the external interface transceivers are dictated by the application. The performance variables that remain are the 

PCI Bus width and the FIFO sizes. If the application doesn’t mandate the PCI bus width, then going with an 

HPDI32 with a 64-bit bus has the potential for better performance and/or higher bus utilization efficiency. The peak 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

12 

General Standards Corporation, Phone: (256) 880-8787 
 

transfer rates across the PCI bus are 528MB/S for the 64-bit PCI bus and 132MB/S for the 32-bit bus (64-bits @ 

66MHz vs. 32-bits @ 33MHz). Actual performance can be drastically different for many reasons. Otherwise, the 

remaining performance variable is the FIFO size. As FIFO sizes increase, so do throughput rates. In many cases a 

32-bit board with larger FIFOs outperforms 64-bit boards with smaller FIFOs. The processor board the HPDI32 is 

plugged into, and its supporting chip set, also have significant affects on performance. 

1.10. Reference Material 

The following reference material may be of particular benefit in using the HPDI32 and this SDK. The specifications 

provide the information necessary for an in-depth understanding of the specialized features implemented on this 

board. 

 The applicable HPDI32 User Manual from General Standards Corporation. 

 The PCI9080 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc. (for 32-bit 

PCI interface boards) * 

 The PCI9656 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc. (for 64-bit 

PCI interface boards) * 

* PLX data books are available from PLX at the following location. 

PLX Technology Inc. 

870 Maude Avenue 

Sunnyvale, California 94085 USA 

Phone: 1-800-759-3735 

WEB: http://www.plxtech.com/ 

 

 

http://www.plxtech.com/


HPDI32, Software Development Kit 6.1.0, Reference Manual 

13 

General Standards Corporation, Phone: (256) 880-8787 
 

2. Operation 

The purpose of this section is to provide information on the operation of the HPDI32 and the API. This is not 

intended to be comprehensive. It is intended to give a basic understanding of the board and the software while 

addressing some issues relating to their use.  

2.1. Transmitter Operation 

The transmitter is that portion of the HPDI32 responsible for sending data out over the cable interface. The 

transmitter consists of numerous hardware features that operate under control of the SDK and the application. The 

hardware portion includes a clock, data FIFOs, firmware registers, control logic, and cable signal transceivers. The 

SDK portion consists of function calls, parameter identifiers, and parameter values. Together these components 

permit applications to feed data to the transmitter, and give applications control over how the transmitter controls 

data flow out the cable interface. An overall depiction is given in Figure 1. Some general guidelines for using the 

transmitter are as follows. Each of these steps is further explained in subsequent paragraphs. 

1. Identify the basic nature of the data’s organization; continuous stream or a sequence of frames. 

2. Identify the cable signals needed, how each will be used, and how each will operate. 

3. Configure the cable signals according to how each will be used. 

4. Configure the cable signal parameters so that each signal has the desired operating characteristics. 

5. Identify how overall data flow will be started and stopped; remote, local (automatic and/or manual). 

6. Configure the device according to how overall data flow will be started and stopped. 

7. Configure the I/O write parameters. 

8. Enable the transmitter. 

9. Write data to the device. 

10. As appropriate, perform any manual steps to start or stop data flow. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

14 

General Standards Corporation, Phone: (256) 880-8787 
 

Tx/Rx Enabled Tri-State

Cable CommandsTx Overrun

Remote Throttle

Flow Control

Auto Stop

Auto Start

Enable

Data

hpdi32_write()

Oscillator Tx Clock Divider

Tx FIFO

Control Logic

Rx Ready

(Remote Throttle Input)

Status Valid

Line Valid

Frame Valid

Tx Ready

(Tx FIFO Empty Status)

Tx Enabled

Tx Data

Tx Clock

C5

C4

C1

C2

C3

C0

On Count/Valid Data Out

Flow

Pause

Enabled

Disabled

Tx FIFO is Empty

Tx FIFO Has Data

Transmitting

Not Transmitting

Off Count/No Data Out

On Count/Valid Status Out

Mirror

Data is clocked out on the rising edge.

No Status Out

 
Figure 1 A depiction of the HPDI32 Transmitter. 

2.1.1. Data Organization 

The HPDI32 transmitter supports two basic data organization schemes; a structured stream of frames divided into 

lines, and an unstructured continuous data stream. The structured format divides the overall data stream into a series 

of data frames, with each frame further divided into a series of data lines. Each line may be preceded by a fixed time 

delay in which no data is transmitted. In the unstructured format, data appears on the cable when it is available for 

transmission without delay. By far, most HPDI32 applications have employed an unstructured data stream. For this 

reason the cable signal descriptions that follow assume the use of an unstructured data stream. 

2.1.2. Cable Signals - continuous unstructured data stream 

For continuous unstructured data streams, some cable signals are required and some can be ignored or used for 

GPIO. The Tx Clock and Tx Data signals are always required. The Frame Valid signal is needed while the Line 

Valid and Status valid signals can be ignored or used for GPIO. If the remote device will be controlling data flow, 

then the Rx Ready signal must be used as the Remote Throttle input. Otherwise the Rx Ready signal can be ignored 

or used as GPIO. The Tx Enabled signal can be used to indicate when the transmitter is enabled, if desired, or it can 

be ignored or used as GPIO. Also, the Tx Ready signal can be used to indicate when the transmitter has data, if 

desired, or it too can be ignored or used as GPIO. 

The simplest configuration usable for a continuous unstructured data stream is illustrated in Figure 2. This 

configuration uses the Tx Clock, Tx Data and Frame Valid signals, while all of the other transmitter signals are 

unused. Even in this simplest configuration the unused signals must be configured, though they are configured so 

that they are unused by the transmitter. The easiest way to do this is to configure the unused signals as general 

purpose inputs. Signal configuration is described below. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

15 

General Standards Corporation, Phone: (256) 880-8787 
 

Rx Ready

Status Valid

Frame Valid

Tx Ready

Line Valid

Tx Enabled

Tx Clock

Tx Data

optional

unused

unused

optional

optional

Remote throttling input.

 
Figure 2 A simple continuous unstructured data stream cable configuration.  

2.1.2.1. Tx Clock 

The Tx Clock output signal is the clock that synchronizes the transmitter logic and which clocks data out the cable 

interface. This clock is derived from the on-board oscillator, which is fed through the Tx Clock Divider. If the 

divider is zero, then the Tx Clock frequency equals the on-board oscillator frequency. Otherwise the Tx Clock 

frequency is governed by the formula FTxC = FOsc / (Div * 2). In the formula, FTxC is the Tx Clock 

frequency, FOsc is the on-board oscillator frequency, and Div is the Tx Clock Divider value. The Tx Clock signal is 

driven on the cable interface only when the transmitter is enabled. When the transmitter is disabled the signal is not 

driven by the HPDI32. For enabling and disabling the transmitter, refer to “Enable” on page 19. 

The Tx Clock Divider is configurable. For details on setting the divider refer to “Transmitter Parameter: Tx Clock 

Divider” on page 93. The divider can most easily be set using the utility macro 

HPDI32_TX_CLOCK_DIVIDER__SET(h,s). In the macro, h is the device handle obtained from 

hpdi32_open() (page 54). Also, s is the divider value to apply and is limited to the range zero to 0xFFFF. A 

return value of GSC_SUCCESS indicates that the operation was successful. Using the above formula with a 20MHz 

on-board oscillator, a divider value of two will produce a Tx Clock frequency of 5MHz. Likewise, a divider of ten 

will result in a 1MHz Tx Clock. 

2.1.2.2. Tx Data 

The Tx Data output signals are synchronized with the Tx Clock to transmit 32-bits of parallel data. The transmitter 

clocks out the data on Tx Clock’s rising edge. See Figure 3. The transmitter hardware has a 32-bit data path, 

including the FIFOs and the cable transceivers. When the source data is less than 32-bits wide, it is aligned with the 

D0 bit and passed through the transmitter as full 32-bit data words. When the source data is 8-bits wide it appears on 

cable signals D0 through D7. The upper 24 data signals can be ignored, though they are driven by the transmitter. 

When the source data is 16-bits wide it appears on cable signals D0 through D15. The upper 16 data signals can be 

ignored, though they are driven by the transmitter. The Tx Data signals are driven on the cable interface only when 

the transmitter is enabled. When the transmitter is disabled the signals are not driven by the HPDI32. For enabling 

and disabling the transmitter, refer to “Enable” on page 19. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

16 

General Standards Corporation, Phone: (256) 880-8787 
 

Tx Clock

Tx Data

The transmitter clocks data 

out on the rising edge.

 
Figure 3 Tx Data is synchronized with Tx Clock. 

The cable data size is configurable. For details refer to “I/O Parameter: Data Size” on page 75. The data size can 

most easily be set via the utility macros HPDI32_IO_DATA_SIZE__TX_32/16/8(h) to specify the data size 

as 32, 16 or eight bits, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 

54). A return value of GSC_SUCCESS indicates that the operation was successful. 

2.1.2.3. Tx Enabled 

The Tx Enabled output signal reflects the enabled state of the transmitter. This signal is not required for Flow 

Control of continuous unstructured data streams so applications may instead configure it as GPIO so that it is 

ignored by the transmitter. As a Flow Control signal, Tx Enabled is driven high when the transmitter is enabled and 

is driven low when disabled (see the note below for alternation operation). The signal changes state as the 

transmitter is enabled or disabled and is not synchronized with Tx Clock. Refer to Figure 4. For enabling and 

disabling the transmitter, refer to “Enable” on page 19. 

Tx Enabled

DisabledTransmitter Enabled Disabled

 
Figure 4 The Tx Enabled signal reflects the transmitter enable state (default configuration). 

NOTE: An alternative option configures Tx Enabled so that it is tri-stated when the transmitter is 

disabled. Refer to “Tx/Rx Enabled Tri-State” on page 20. 

The Tx Enabled signal refers to the Cable Command 5 signal when configured to operate in its Flow Control mode. 

For details on setting the mode refer to “Cable Parameter: Command Mode” on page 67. The mode can most easily 

be set via the utility macros HPDI32_CABLE_COMMAND_MODE__TE_FC/IN/LOW/HI(h) to set the mode to 

Flow Control (Tx Enabled), a general purpose input, a general purpose output driven low, or a general purpose 

output driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 54). 

A return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can 

be ignored altogether, configure it as a general purpose input. 

2.1.2.4. Tx Ready 

The Tx Ready output signal reflects the availability of data from the transmitter. This signal is not required for Flow 

Control of continuous unstructured data streams so applications may instead configure it as GPIO so that it is 

ignored by the transmitter. As a Flow Control signal, Tx Ready is driven high when the Tx FIFO is empty and is 

driven low when the Tx FIFO has data. Refer to Figure 5. The signal state changes are not synchronized with Tx 

Clock. The Tx Ready signal is driven on the cable interface only when the transmitter is enabled. When the 

transmitter is disabled the signal is not driven by the HPDI32. For enabling and disabling the transmitter, refer to 

“Enable” on page 19. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

17 

General Standards Corporation, Phone: (256) 880-8787 
 

Tx Ready

Has DataTx FIFO Empty Has Data

 
Figure 5 The Tx Ready signal reflects the Tx FIFO empty state. 

The Tx Ready signal refers to the Cable Command 4 signal when configured to operate in its Flow Control mode. 

For details on setting the mode refer to “Cable Parameter: Command Mode” on page 67. The mode can most easily 

be set via the utility macros HPDI32_CABLE_COMMAND_MODE__TR_FC/IN/LOW/HI(h) to set the mode to 

Flow Control (Tx Ready), a general purpose input, a general purpose output driven low, or a general purpose output 

driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 54). A 

return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can be 

ignored altogether, configure it as a general purpose input. 

2.1.2.5. Frame Valid 

The Frame Valid output signal reflects the activity of the data transmission process. When the Line Valid and Status 

Valid signals are not used for Flow Control, then Frame Valid effectively reflects valid transmit data being 

presented at the cable interface. The Frame Valid signal is required for Flow Control of continuous unstructured data 

streams so applications must not configure it as GPIO. As a Flow Control signal, Frame Valid is driven high when 

the transmission process is active and is driven low when the transmission process is idle. Refer to Figure 6. The 

signal is synchronized with Tx Clock and changes state on the clock’s rising edge. The Frame Valid signal is driven 

on the cable interface only when the transmitter is enabled. When the transmitter is disabled the signal is not driven 

by the HPDI32. For enabling and disabling the transmitter, refer to “Enable” on page 19. 

Frame Valid

IdleTransmitter Active Idle

Tx Clock

 
Figure 6 The Frame Valid signal reflects the data transmission process. 

The Frame Valid signal refers to the Cable Command 0 signal when configured to operate in its Flow Control mode. 

For details on setting the mode refer to “Cable Parameter: Command Mode” on page 67. The mode can most easily 

be set via the utility macros HPDI32_CABLE_COMMAND_MODE__FV_FC/IN/LOW/HI(h) to set the mode to 

Flow Control (Frame Valid), a general purpose input, a general purpose output driven low, or a general purpose 

output driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 54). 

A return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can 

be ignored altogether, configure it as a general purpose input. 

2.1.2.6. Line Valid 

The Line Valid signal output reflects valid transmit data being presented at the cable interface. This signal is not 

required for Flow Control of continuous unstructured data streams so applications should configure it as GPIO so 

that it is ignored by the transmitter. As a Flow Control signal, Line Valid is driven high when valid transmit data is 

presented at the cable interface and is driven low otherwise (see below for additional information). Refer to Figure 

7. The signal is synchronized with Tx Clock and changes state on the clock’s rising edge. The Line Valid signal is 

driven on the cable interface only when the transmitter is enabled. When the transmitter is disabled the signal is not 

driven by the HPDI32. For enabling and disabling the transmitter, refer to “Enable” on page 19. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

18 

General Standards Corporation, Phone: (256) 880-8787 
 

Line Valid

NoTransmit Data Yes No

Tx Clock

 
Figure 7 The Line Valid signal reflects valid transmit data being presented at the cable interface. 

The Line Valid signal refers to the Cable Command 1 signal when configured to operate in its Flow Control mode. 

For details on setting the mode refer to “Cable Parameter: Command Mode” on page 67. The mode can most easily 

be set via the utility macros HPDI32_CABLE_COMMAND_MODE__LV_FC/IN/LOW/HI(h) to set the mode to 

Flow Control (Line Valid), a general purpose input, a general purpose output driven low, or a general purpose output 

driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 54). A 

return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can be 

ignored altogether, configure it as a general purpose input. When configured for Flow Control, the Line Valid timing 

must be configured. For details refer to “Transmitter Parameter: Line Valid On Count” (page 95) and “Transmitter 

Parameter: Line Valid Off Count” (page 95). The operation of Line Valid is also affected by the configuration of the 

Status Valid signal (see the next subsection). 

2.1.2.7. Status Valid 

The Status Valid output signal reflects valid status data being presented at the cable interface. This signal is not 

required for Flow Control of continuous unstructured data streams so applications should configure it as GPIO so 

that it is ignored by the transmitter. As a Flow Control signal, Status Valid is driven high when valid status data is 

presented at the cable interface and is driven low otherwise (see below for additional information). Refer to Figure 

8. The signal is synchronized with Tx Clock and changes state on the clock’s rising edge. The Status Valid signal is 

driven on the cable interface only when the transmitter is enabled. When the transmitter is disabled the signal is not 

driven by the HPDI32. For enabling and disabling the transmitter, refer to “Enable” on page 19. 

Status Valid

NoStatus Data Yes No

Tx Clock

 
Figure 8 The Status Valid signal reflects valid status data being presented at the cable interface. 

The Status Valid signal refers to the Cable Command 2 signal when configured to operate in its Flow Control mode. 

For details on setting the mode refer to “Cable Parameter: Command Mode” on page 67. The mode can most easily 

be set via the utility macros HPDI32_CABLE_COMMAND_MODE__SV_FC/IN/LOW/HI(h) to set the mode to 

Flow Control (Status Valid), a general purpose input, a general purpose output driven low, or a general purpose 

output driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 54). 

A return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can 

be ignored altogether, configure it as a general purpose input. When configured for Flow Control, the Status Valid 

signal must be configured. For details refer to “Transmitter Parameter: Status Valid Count” (page 97) and 

“Transmitter Parameter: Status Valid Mirror” (page 98). The configuration of the Status Valid signal has an affect 

on the Line Valid signal (see the previous subsection). 

2.1.2.8. Rx Ready 

The Rx Ready input signal may be used by receiving devices to pause the flow of data from the HPDI32 transmitter. 

This signal is optional for Flow Control of continuous unstructured data streams so applications may instead 

configure it as GPIO so that it is ignored by the transmitter. As a Flow Control signal, Rx Ready is driven high to 

permit data flow and is driven low to pause data flow (see below for additional information). Refer to Figure 9. The 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

19 

General Standards Corporation, Phone: (256) 880-8787 
 

signal is synchronized with Tx Clock such that state changes are clocked in on the clock’s rising edge. The Rx 

Ready input signal is driven by the receiving device, and not by the HPDI32 transmitter. 

Rx Ready

PauseTransmission Flow Pause

Tx Clock

 
Figure 9 The receiving device can drive the Rx Ready signal to control data flow. 

The Rx Ready signal refers to the Cable Command 3 signal when configured to operate in its Flow Control mode. 

For details on setting the mode refer to “Cable Parameter: Command Mode” on page 67. The mode can most easily 

be set via the utility macros HPDI32_CABLE_COMMAND_MODE__RR_FC/IN/LOW/HI(h) to set the mode to 

Flow Control (Rx Ready), a general purpose input, a general purpose output driven low, or a general purpose output 

driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 54). A 

return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can be 

ignored altogether, configure it as a general purpose input. When configured for Flow Control, the transmitter must 

be configured to utilize Rx Ready. Otherwise, the transmitter will ignore the Rx Ready input. For additional details 

refer to “Remote Throttle” on page 20. 

2.1.3. Control Options - continuous unstructured data stream 

The following transmitter control options are discussed from the perspective of sending data via a continuous, 

unstructured data stream. 

2.1.3.1. Enable 

This option is used to enable and disable the transmitter. When enabled, the transmitter is able to send data out over 

the cable interface, and will do so according to related control options. That is, the transmitter will send data when 

directed to do so. The related control options are discussed below. When disabled, the transmitter is unable to 

transmit data over the cable interface. If data is being transmitted at the time the transmitter becomes disabled, then 

data transmission will stop. The transmitter can most easily be enabled and disabled via the utility macros 

HPDI32_TX_ENABLE__YES(h) and HPDI32_TX_ENABLE__NO(h), respectively (see “Transmitter 

Parameter: Tx Enable” on page 94). In the macros, h is the device handle obtained from hpdi32_open() (page 

54). A return value of GSC_SUCCESS indicates that the operation was successful. 

2.1.3.2. Auto Start 

This control option is used to tell the API to automatically begin data transmission over the cable interface when 

data is written to the HPDI32. If this option is enabled and the transmitter is enabled (see “Enable” on page 19), then 

the API will automatically initiate data transmission as data is being written (see hpdi32_write()on page 62). 

The Auto Start feature uses the “Flow Control” enable option (page 20) to initiate data transmission. If Auto Start is 

disabled, then data flow must be controlled either manually via the “Flow Control” option (page 20) or remotely via 

the “Remote Throttle” option (page 20). Auto Start can most easily be enabled and disabled via the utility macros 

HPDI32_TX_AUTO_START__YES(h) and HPDI32_TX_AUTO_START__NO(h), respectively (see 

“Transmitter Parameter: Auto Start” on page 92). In the macros, h is the device handle obtained from 

hpdi32_open() (page 54). A return value of GSC_SUCCESS indicates that the operation was successful. 

2.1.3.3. Auto Stop 

This control option is available on current firmware versions, and should always be disabled. This option is 

presented here for completeness sake only. When the Auto Stop feature is available in firmware, disabling it could 

interfere with proper data flow. This option can most easily be enabled and disabled via the utility macros 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

20 

General Standards Corporation, Phone: (256) 880-8787 
 

HPDI32_TX_AUTO_STOP__YES(h) and HPDI32_TX_AUTO_STOP__NO(h), respectively (see “Transmitter 

Parameter: Auto Stop” on page 93). In the macros, h is the device handle obtained from hpdi32_open() (page 

54). A return value of GSC_SUCCESS indicates that the operation was successful. 

2.1.3.4. Flow Control 

This option is used for local, manual control to permit or pause data flow over the cable interface. If the transmitter 

is enabled (see “Enable” on page 19) and data is in the Tx FIFO (see hpdi32_write()on page 62), then data 

transmission over the cable interface will begin when this option is enabled. Data transmission will pause when this 

option is disabled. This option can most easily be used to start and stop data flow via the utility macros 

HPDI32_TX_FLOW_CONTROL__START(h) and HPDI32_TX_FLOW_CONTROL__STOP(h), respectively 

(see “Transmitter Parameter: Flow Control” on page 94). In the macros, h is the device handle obtained from 

hpdi32_open() (page 54). A return value of GSC_SUCCESS indicates that the operation was successful. 

NOTE: This option operates in parallel with the “Remote Throttle” option (page 20). These two 

features should generally not be used at the same time. 

2.1.3.5. Remote Throttle 

This option configures the transmitter to use or not use the “Rx Ready” cable signal (page 18). If this option is 

enabled, and the “Rx Ready” signal is configured for Flow Control, then the transmitter will use that signal to either 

permit or pause data transmission over the cable interface. This makes it possible for the receiving device to pause 

data transfer as needed. When properly configured, the receiving device must drive the “Rx Ready” signal 

appropriately to affect the flow of data. This option can most easily be enabled and disabled via the utility macros 

HPDI32_TX_REMOTE_THROTTLE__ENABLE(h) and HPDI32_TX_REMOTE_THROTTLE__DISABLE(h), 

respectively (see “Transmitter Parameter: Remote Throttle” on page 96). In the macros, h is the device handle 

obtained from hpdi32_open() (page 54). A return value of GSC_SUCCESS indicates that the operation was 

successful. 

NOTE: For the remote throttling feature to function properly this option must be enabled and the 

“Rx Ready” signal (page 18) must be configured for Flow Control. Otherwise, the remote 

throttling feature will not operate properly. 

NOTE: This option operates in parallel with the “Flow Control” option (page 20). These two 

features should generally not be used at the same time. 

2.1.3.6. Tx Overrun 

This control option is available via the API, though it is rarely needed or used. This option is presented here for 

completeness sake only. This option is used to report cases where data has been written to the Tx FIFO when it was 

already full. This circumstance can occur only when applications write directly to the Tx FIFO or when applications 

use non-Demand Mode DMA (page 77) with the Manual DMA Control Mode option (page 76). Otherwise, the API 

prevents the Tx FIFO from being overfilled. This option can both report the overflow condition and clear the 

condition. This option can most easily be used to query for an overflow via the utility macro 

HPDI32_TX_OVERRUN__GET(h,g) (see “Transmitter Parameter: Tx Overrun” on page 96). If the value 

returned for g equals HPDI32_TX_OVERRUN_YES, then an overflow has occurred. An overflow can most easily 

be cleared via the utility macro HPDI32_TX_OVERRUN__CLEAR(h). In the macros, h is the device handle 

obtained from hpdi32_open() (page 54), and g is the value reported for a query. A return value of 

GSC_SUCCESS indicates that the operation was successful. 

2.1.3.7. Tx/Rx Enabled Tri-State 

This option controls how the “Tx Enabled” signal (page 16) is driven when the transmitter is disabled. Ordinarily, 

the signal is driven all the time, even when the transmitter is disabled. With this control option however, the signal 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

21 

General Standards Corporation, Phone: (256) 880-8787 
 

can be tri-stated when the transmitter is disabled. The signal’s state when the transmitter is disabled can most easily 

be tri-stated or driven low via the utility macros HPDI32_MISC_TX_RX_TRI_STATE__YES(h) and 

HPDI32_MISC_TX_RX_TRI_STATE__NO(h), respectively (see “Miscellaneous Parameter: Tx/Rx Tri-State” 

on page 89). In the macros, h is the device handle obtained from hpdi32_open() (page 54). A return value of 

GSC_SUCCESS indicates that the operation was successful. 

NOTE: This option affects both the “Tx Enabled” signal (page 16) and the “Rx Enabled” signal 

(page 24). 

2.2. Transmitter Setup 

The below outlines the basic steps needed to setup the HPDI32 for transmission to a receiving device. Follow these 

simple steps to help establish communications between the HPDI32 as a transmission device and a remote data 

reception device. 

1. Configure the HPDI32 for data transmission as outlined in the following subsection. This includes enabling 

the transmitter. 

2. Configure the remote device as needed for data reception operations. 

3. The remote device should now be ready to receive data. 

4. Initiate data transmission from the HPDI32 as appropriate. 

2.3. Transmitter Configuration 

The below guidelines give an overview of the programming steps needed to configure the HPDI32 transmitter to 

send data out over the cable interface. 

1. Return the API and the device to a known state by calling hpdi32_init() (page 50). This places the 

API and the HPDI32 in the same state it was in when first opened. 

2. Configure the Miscellaneous Parameters, which can be done using the many HPDI32_MISC_XXX() 

macros (page 84). 

3. Configure the Cable Parameters, which can be done using the many HPDI32_CABLE_XXX() macros 

(page 66). 

4. Configure the FIFO Parameters, which can be done using the many HPDI32_FIFO_XXX() macros (page 

68). 

5. Configure the I/O Parameters, which can be done using the many HPDI32_IO_XXX() macros (page 71). 

6. Configure the Transmitter Parameters, which can be done using the many HPDI32_TX_XXX() macros 

(page 92). Enabling the transmitter is generally a very last step. 

7. Configure the Interrupt Parameters, which can be done using the many HPDI32_IRQ_XXX() macros 

(page 81). 

8. Write the desired data to the device. Refer to hpdi32_write() on page 62. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

22 

General Standards Corporation, Phone: (256) 880-8787 
 

2.4. Receiver Operation 

The receiver is that portion of the HPDI32 responsible for receiving data in from the cable interface. The receiver 

consists of numerous hardware features that operate under control of the SDK and the application. The hardware 

portion includes data FIFOs, firmware registers, control logic, and cable signal transceivers. The SDK portion 

consists of function calls, parameter identifiers, and parameter values. Together these components permit 

applications to retrieve data from the receiver as it is captured over the cable interface. An overall depiction is given 

in Figure 10. Some general guidelines for using the receiver are as follows. Each of these steps is further explained 

in subsequent paragraphs. 

1. Identify the basic nature of the data’s organization; continuous stream or a sequence of frames. 

2. Identify the cable signals needed, how each will be used, and how each will operate. 

3. Configure the cable signals according to how each will be used. 

4. Configure the cable signal parameters so that each signal has the desired operating characteristics. 

5. Identify if and how overall data flow will be permitted or paused. 

6. Configure the device according to how overall data flow will be permitted or paused. 

7. Configure the I/O read parameters. 

8. Enable the receiver. 

9. Read data from the device. 

Tx/Rx Enabled Tri-State

Cable Commands

Rx Under Run

Enable

Data

hpdi32_read()
Rx FIFO

Control Logic

Rx Ready

(Remote Throttle Output)

Status Valid

Line Valid

Frame Valid

Rx Enabled

Rx Data

Rx Clock

C6

C1

C2

C3

C0

Flow

Pause

Data is clocked in on the falling edge.

Rx Overrun

Enabled

Disabled

Receiving

Not Receiving

Valid Data In

No Data In

Valid Status In

No Status In

 
Figure 10 A depiction of the HPDI32 Receiver. 

2.4.1. Data Organization 

The HPDI32 receiver supports two basic data organization schemes; a structured stream of frames divided into lines, 

and an unstructured continuous data stream. The structured format divides the overall data stream into a series of 

data frames, with each frame further divided into a series of data lines. In the unstructured format, data is captured 

without regard to such boundaries. By far, most HPDI32 applications have employed an unstructured data stream. 

For this reason the cable signal descriptions that follow assume the use of an unstructured data stream. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

23 

General Standards Corporation, Phone: (256) 880-8787 
 

2.4.2. Cable Signals - continuous unstructured data stream 

For continuous unstructured data streams, some cable signals are required and some can be ignored or used for 

GPIO. The Rx Clock and Rx Data signals are always required. The Frame Valid signal is needed while the Line 

Valid and Status valid signals can be ignored or used for GPIO. If the remote device can be paused, then the Rx 

Ready signal may be used as the Remote Throttle output. Otherwise the Rx Ready signal can be ignored or used as 

GPIO. 

The simplest configuration usable for a continuous unstructured data stream is illustrated in Figure 11. This 

configuration uses the Rx Clock, Rx Data and Frame Valid signals, while all of the other receiver signals are 

unused. Even in this simplest configuration the unused signals must be configured, though they are configured so 

that they are unused by the receiver. The easiest way to do this is to configure the unused signals as general purpose 

inputs. Signal configuration is described below. 

Rx Ready

Status Valid

Frame Valid

Line Valid

Rx Enabled

Rx Clock

Rx Data

optional

unused

unused

optional

Remote throttling output.

 
Figure 11 A simple continuous unstructured data stream cable configuration.  

2.4.2.1. Rx Clock 

The Rx Clock input signal is the clock that synchronizes the receiver logic and which clocks data in from the cable 

interface. The Rx Clock must be provided by the remote transmitting device. The input is ignored when the receiver 

is disabled and must be driver when the receiver is enabled. For enabling and disabling the receiver, refer to 

“Enable” on page 26. 

2.4.2.2. Rx Data 

The Rx Data input signals are synchronized with the Rx Clock to record 32-bits of parallel data. The receiver clocks 

in the data on Rx Clock’s falling edge. The transmitting device clocks out the data on the clock’s rising edge. See 

Figure 12. The receiver hardware has a 32-bit data path, including the FIFOs and the cable transceivers. When the 

source data is less than 32-bits wide, it is aligned with the D0 bit and passed through the receiver as full 32-bit data 

words. When the source data is 8-bits wide it appears on cable signals D0 through D7. The upper 24 data signals are 

recorded, but can be ignored. When the source data is 16-bits wide it appears on cable signals D0 through D15. The 

upper 16 data signals are recorded, but can be ignored. The Rx Data signals are ignored when the receiver is 

disabled and must be driver when the receiver is enabled. For enabling and disabling the receiver, refer to “Enable” 

on page 26. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

24 

General Standards Corporation, Phone: (256) 880-8787 
 

Rx Clock

Rx Data

The receiver clocks data 

in on the falling edge.

 
Figure 12 Rx Data is synchronized with Rx Clock. 

The cable data size is configurable. For details refer to “I/O Parameter: Data Size” on page 75. The data size can 

most easily be set via the utility macros HPDI32_IO_DATA_SIZE__RX_32/16/8(h) to specify the data size 

as 32, 16 or eight bits, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 

54). A return value of GSC_SUCCESS indicates that the operation was successful. 

2.4.2.3. Rx Enabled 

The Rx Enabled output signal reflects the enabled state of the receiver. This signal is not required for Flow Control 

of continuous unstructured data streams so applications may instead configure it as GPIO so that it is ignored by the 

receiver. As a Flow Control signal, Rx Enabled is driven high when the receiver is enabled and is driven low when 

disabled (see the note below for alternation operation). The signal changes state as the receiver is enabled or 

disabled and is not synchronized with Rx Clock. Refer to Figure 13. For enabling and disabling the receiver, refer to 

“Enable” on page 26. 

Rx Enabled

DisabledReceiver Enabled Disabled

 
Figure 13 The Rx Enabled signal reflects the receiver enable state (default configuration). 

NOTE: An alternative option configures Rx Enabled so that it is tri-stated when the receiver is 

disabled. Refer to “Tx/Rx Enabled Tri-State” on page 27. 

The Rx Enabled signal refers to the Cable Command 6 signal when configured to operate in its Flow Control mode. 

For details on setting the mode refer to “Cable Parameter: Command Mode” on page 67. The mode can most easily 

be set via the utility macros HPDI32_CABLE_COMMAND_MODE__RE_FC/IN/LOW/HI(h) to set the mode to 

Flow Control (Rx Enabled), a general purpose input, a general purpose output driven low, or a general purpose 

output driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 54). 

A return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can 

be ignored altogether, configure it as a general purpose input. 

2.4.2.4. Frame Valid 

The Frame Valid input signal reflects the activity of the data reception process. When the Line Valid and Status 

Valid signals are not used for Flow Control, then Frame Valid effectively reflects valid receive data being available 

at the cable interface. The Frame Valid signal is required for Flow Control of continuous unstructured data streams 

so applications must not configure it as GPIO. As a Flow Control signal, Frame Valid is driven high when the 

reception process is active and is driven low when the reception process is idle. Refer to Figure 14. The signal is 

synchronized with Rx Clock. Frame Valid should change state on the clock’s rising edge as it is clocked in on the 

clock’s falling edge. The Frame Valid signal is ignored when the receiver is disabled and must be driver when the 

receiver is enabled. For enabling and disabling the receiver, refer to “Enable” on page 26. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

25 

General Standards Corporation, Phone: (256) 880-8787 
 

Frame Valid

IdleReceiver Active Idle

Rx Clock

 
Figure 14 The Frame Valid signal reflects the data reception process. 

The Frame Valid signal refers to the Cable Command 0 signal when configured to operate in its Flow Control mode. 

For details on setting the mode refer to “Cable Parameter: Command Mode” on page 67. The mode can most easily 

be set via the utility macros HPDI32_CABLE_COMMAND_MODE__FV_FC/IN/LOW/HI(h) to set the mode to 

Flow Control (Frame Valid), a general purpose input, a general purpose output driven low, or a general purpose 

output driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 54). 

A return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can 

be ignored altogether, configure it as a general purpose input. 

2.4.2.5. Line Valid 

The Line Valid input signal reflects valid receive data being presented at the cable interface. This signal is not 

required for Flow Control of continuous unstructured data streams so applications should configure it as GPIO so 

that it is ignored by the receiver. As a Flow Control signal, Line Valid is driven high when valid transmit data is 

presented at the cable interface and is driven low otherwise (see below for additional information). Refer to Figure 

15. The signal is synchronized with Rx Clock. Line Valid should change state on the clock’s rising edge as it is 

clocked in on the clock’s falling edge. The Line Valid signal is ignored when the receiver is disabled and must be 

driver when the receiver is enabled. For enabling and disabling the receiver, refer to “Enable” on page 26. 

Line Valid

NoReceive Data Yes No

Rx Clock

 
Figure 15 The Line Valid signal reflects valid transmit data being presented at the cable interface. 

The Line Valid signal refers to the Cable Command 1 signal when configured to operate in its Flow Control mode. 

For details on setting the mode refer to “Cable Parameter: Command Mode” on page 67. The mode can most easily 

be set via the utility macros HPDI32_CABLE_COMMAND_MODE__LV_FC/IN/LOW/HI(h) to set the mode to 

Flow Control (Line Valid), a general purpose input, a general purpose output driven low, or a general purpose output 

driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 54). A 

return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can be 

ignored altogether, configure it as a general purpose input. 

2.4.2.6. Status Valid 

The Status Valid input signal reflects valid status data being presented at the cable interface. This signal is not 

required for Flow Control of continuous unstructured data streams so applications should configure it as GPIO so 

that it is ignored by the receiver. As a Flow Control signal, Status Valid is driven high when valid status data is 

presented at the cable interface and is driven low otherwise (see below for additional information). Refer to Figure 

16. The signal is synchronized with Rx Clock and is clocked in on the clock’s falling edge. The Status Valid signal 

is ignored when the receiver is disabled and must be driver when the receiver is enabled. For enabling and disabling 

the receiver, refer to “Enable” on page 26. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

26 

General Standards Corporation, Phone: (256) 880-8787 
 

Status Valid

NoStatus Data Yes No

Rx Clock

 
Figure 16 The Status Valid signal reflects valid status data being presented at the cable interface. 

The Status Valid signal refers to the Cable Command 2 signal when configured to operate in its Flow Control mode. 

For details on setting the mode refer to “Cable Parameter: Command Mode” on page 67. The mode can most easily 

be set via the utility macros HPDI32_CABLE_COMMAND_MODE__SV_FC/IN/LOW/HI(h) to set the mode to 

Flow Control (Status Valid), a general purpose input, a general purpose output driven low, or a general purpose 

output driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 54). 

A return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can 

be ignored altogether, configure it as a general purpose input. 

2.4.2.7. Rx Ready 

The Rx Ready output signal may be used by the receiver to pause the flow of data from the remote transmitting 

device. This signal is optional for Flow Control of continuous unstructured data streams so applications may instead 

configure it as GPIO so that it is ignored by the receiver. As a Flow Control signal, Rx Ready is driven high to 

permit data flow and is driven low to pause data flow. Refer to Figure 17. The signal reflects the Rx FIFO Almost 

Full Status. The signal is not synchronized with Rx Clock and changes state as the FIFO fill level changes. The Rx 

Ready signal is driven when the receiver is enabled and is tri-stated when the receiver is disabled. For enabling and 

disabling the receiver, refer to “Enable” on page 26. 

Rx Ready

PauseRx FIFO Flow Pause

 
Figure 17 The receiver drives the Tx Ready signal to control data flow. 

The Rx Ready signal refers to the Cable Command 3 signal when configured to operate in its Flow Control mode. 

For details on setting the mode refer to “Cable Parameter: Command Mode” on page 67. The mode can most easily 

be set via the utility macros HPDI32_CABLE_COMMAND_MODE__RR_FC/IN/LOW/HI(h) to set the mode to 

Flow Control (Rx Ready), a general purpose input, a general purpose output driven low, or a general purpose output 

driven high, respectively. In the macros, h is the device handle obtained from hpdi32_open() (page 54). A 

return value of GSC_SUCCESS indicates that the operation was successful. To configure the signal so that it can be 

ignored altogether, configure it as a general purpose input. 

2.4.3. Control Options - continuous unstructured data stream 

The following receiver control options are discussed from the perspective of receiving data via a continuous, 

unstructured data stream. 

2.4.3.1. Enable 

This option is used to enable and disable the receiver. When enabled, the receiver is able to capture data from the 

cable interface, and will do so according to related control options. That is, the receiver will record data when 

directed to do so. The related control options are discussed below. When disabled, the receiver is unable to receive 

data over the cable interface. If data is being received at the time the receiver becomes disabled, then data recording 

will stop. The receiver can most easily be enabled and disabled via the utility macros 

HPDI32_RX_ENABLE__YES(h) and HPDI32_RX_ENABLE__NO(h), respectively (see “Receiver Parameter: 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

27 

General Standards Corporation, Phone: (256) 880-8787 
 

Rx Enable” on page 90). In the macros, h is the device handle obtained from hpdi32_open() (page 54). A return 

value of GSC_SUCCESS indicates that the operation was successful. 

2.4.3.2. Rx Overrun 

This control option is used to capture instances where data is recorded into the Rx FIFO when it is already full. This 

can occur only when the receiver is recording data faster than it is being read out by the host. This option can both 

report the overflow condition and clear the condition. This option can most easily be used to query for an overflow 

via the utility macro HPDI32_RX_OVERRUN__GET(h,g) (see “Receiver Parameter: Rx Overrun” on page 90). 

If the value returned for g equals HPDI32_RX_OVERRUN_YES, then an overflow has occurred. An overflow can 

most easily be cleared via the utility macro HPDI32_RX_OVERRUN__CLEAR(h) (see page 90). In the macros, h 

is the device handle obtained from hpdi32_open() (page 54), and g is the value reported for a query. A return 

value of GSC_SUCCESS indicates that the operation was successful. 

2.4.3.3. Rx Under Run 

This control option is available via the API, though it is rarely needed or used. This option is presented here for 

completeness sake only. This option is used to report cases where data has been read from the Rx FIFO when it was 

empty. This circumstance can occur only when applications read directly from the Rx FIFO or when applications 

use non-Demand Mode DMA (page 77) with the Manual DMA Control Mode option (page 76). Otherwise, the API 

prevents the Rx FIFO from being read when empty. This option can both report the underflow condition and clear 

the condition. This option can most easily be used to query for an underflow via the utility macro 

HPDI32_RX_UNDER_RUN__GET(h,g) (see “Receiver Parameter: Rx Under Run” on page 91). If the value 

returned for g equals HPDI32_RX_UNDER_RUN_YES, then an underflow has occurred. An underflow can most 

easily be cleared via the utility macro HPDI32_RX_UNDER_RUN__CLEAR(h) (see page 91). In the macros, h is 

the device handle obtained from hpdi32_open() (page 54), and g is the value reported for a query. A return 

value of GSC_SUCCESS indicates that the operation was successful. 

2.4.3.4. Tx/Rx Enabled Tri-State 

This option controls how the “Rx Enabled” signal (page 24) is driven when the receiver is disabled. Ordinarily, the 

signal is driven all the time, even when the receiver is disabled. With this control option however, the signal can be 

tri-stated when the receiver is disabled. The signal’s state when the receiver is disabled can most easily be tri-stated 

or driven low via the utility macros HPDI32_MISC_TX_RX_TRI_STATE__YES(h) and 

HPDI32_MISC_TX_RX_TRI_STATE__NO(h), respectively (see “Miscellaneous Parameter: Tx/Rx Tri-State” 

on page 89). In the macros, h is the device handle obtained from hpdi32_open() (page 54). A return value of 

GSC_SUCCESS indicates that the operation was successful. 

NOTE: This option affects both the “Rx Enabled” signal (page 24) and the “Tx Enabled” signal 

(page 16). 

2.5. Receiver Setup 

The below outlines the basic steps needed to setup the HPDI32 for reception from a transmitting device. Follow 

these simple steps to help establish communications between the HPDI32 as a reception device and a remote data 

transmission device. 

1. Configure the remote device as needed for data transmission operations. This includes driving all 

appropriate signals that go to the HPDI32. 

2. Configure the HPDI32 for data reception as outlined in the following subsection. This includes enabling the 

receiver. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

28 

General Standards Corporation, Phone: (256) 880-8787 
 

3. The HPDI32 is now ready to receive data, so the HPDI32 application should prepare itself for reception of 

data. 

4. Initiate data transmission from the remote device. 

2.6. Receiver Configuration 

The below guidelines give an overview of the programming steps needed to configure the HPDI32 receiver to 

capture data from the cable interface. 

1. Return the API and the device to a known state by calling hpdi32_init() (page 50). This places the 

API and the HPDI32 in the same state it was in when first opened. 

2. Configure the Miscellaneous Parameters, which can be done using the many HPDI32_MISC_XXX() 

macros (page 84). 

3. Configure the Cable Parameters, which can be done using the many HPDI32_CABLE_XXX() macros 

(page 66). 

4. Configure the FIFO Parameters, which can be done using the many HPDI32_FIFO_XXX() macros (page 

68). 

5. Configure the I/O Parameters, which can be done using the many HPDI32_IO_XXX() macros (page 71). 

6. Configure the Receiver Parameters, which can be done using the many HPDI32_RX_XXX() macros 

(page 89). Enabling the transmitter is generally a very last step. 

7. Configure the Interrupt Parameters, which can be done using the many HPDI32_IRQ_XXX() macros 

(page 81). 

8. Read data from the device. Refer to hpdi32_read() on page 55. 

2.7. Data Transfer Issues 

2.7.1. Tx vs. Rx Defaults 

There are numerous configurable parameters governing data transfer. When a device is first opened, all are in their 

default state and permit optimal data transmission, once the transmitter is enabled. While some parameters default to 

favor data transmission they are few in number and can easily be configured to favor data reception. These can be 

found in hpdi32_api.h by looking for those macros ending in RX_DEFAULT and TX_DEFAULT. 

2.7.2. I/O Abort Requests 

The API includes the feature of aborting I/O operations. One issue with requesting an abort is that overlapped I/O 

operations occur in the background with threads which may have a priority greater than that of the requesting thread. 

This means that the I/O operation, because of its higher priority, may complete before the API is able to register the 

abort request. 

2.7.3. I/O Data Buffers 

The API Library supports the use of Application Buffers (application allocated buffers) and API Buffers (the API’s 

internally allocated buffers) for I/O operations. Each has plusses and minuses and both can be used by 

hpdi32_read() (page 55) and hpdi32_write() (page 62) interchangeably. Application Buffers are under 

application control and are usually obtained by malloc() or similar services. This permits an application to have 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

29 

General Standards Corporation, Phone: (256) 880-8787 
 

any number of buffers of most any desired size, and they can even exceed the size of physical memory. The 

drawback they have though is that allocations only appear to be contiguous, when, in fact, they are actually scattered 

throughout physical memory. In addition, they can be paged out to the hard disk as needed by the OS. A result of 

this is additional overhead when performing DMA based I/O. API Buffers, on the other hand, avoid this inefficiency 

because they occupy physically contiguous and immovable memory regions, and therefore don’t require the 

overhead during DMA requests. The disadvantage though, is that these may be smaller than desired and the API 

supports only two. (While each of the two API Buffers is associated with a particular I/O data direction, both can be 

used interchangeably at will.) In addition, Application Buffers used for DMA based I/O must reside in memory that 

is both readable and writable. This usually means that I/O buffers declared as const or static const cannot 

be used. DMA based I/O requests will fail if the Application Buffers do not have read/write access. 

While use of API Buffers may generally give better performance, overall performance will be application 

dependent. API users are free to use whichever type desired and can switch from one to the other as needed. Within 

each I/O direction though, there is a small performance penalty when switching from one type to another. There is 

no penalty however when switching between the Rx API Buffer and the Tx API Buffer, as the Rx/Tx association is 

part of the interface and not the implementation. The API Buffers are ideally suited for applications wishing to 

implement a ping-pong or ring-buffer type I/O buffering mechanism. 

API Buffers are accessed via the I/O Buffer Size and I/O Buffer Pointer parameters (see “I/O Parameter: Buffer 

Size” on page 73 and “I/O Parameter: Buffer Pointer” on page 73, respectively).  Each buffer size starts out at zero 

(0) and the pointer as NULL. Application must first use the I/O Buffer Size parameter in order to make an allocation 

request. Since the resources for these memory regions are much more limited than for malloc() type requests, the 

size of the allocation obtained may be smaller than asked for. After a size request use the I/O Buffer Pointer 

parameter to get a pointer to the memory obtained. Each attempt to alter the size demands that the application update 

its pointer. Failure to do so is likely to produce a protection fault. When finished, setting the size to zero (0) frees the 

buffer. 

NOTE: Using Application Buffers for DMA based I/O requests imposes system overhead on the 

call because the memory pages must be prepared for access by the DMA engine. This overhead 

may result in data transmission pauses (because the Tx FIFO runs empty) or Rx FIFO Overruns 

(because the Rx FIFO fills before data retrieval gets underway). The amount of overhead imposed 

can be reduced by reducing the size of the I/O requests, which results in fewer memory pages 

being processed at any one time. The overhead can be eliminated by using API Buffers, since they 

are ready for DMA engine use when allocated. 

2.7.4. General DMA Parameters 

The API has two parameters that affect DMA operations. They are I/O DMA Channel Select and I/O DMA Priority 

(see “I/O Parameter: DMA Channel Select” on page 75 and “I/O Parameter: DMA Priority” on page 77, 

respectively). Both operate independently and are described below. 

DMA channel selection (page 75) is a process the API follows to assign a DMA channel to an I/O operation. (All 

HPDI32s have two DMA channels, but both channels don’t always have the same capabilities.) If the selection 

parameter is set to Static, then the API will select a channel the first time it is needed and retain it until directed 

otherwise. This way, the first read (or write) request will take the overhead hit to acquire the channel, and not again 

until called for. If set to Dynamic, then the API will select a channel at the beginning of an I/O request and release it 

as soon as the request completes. The results is an overhead hit at the beginning of each I/O request to acquire the 

channel and an addition overhead hit afterwards to release it. This parameter should always be set to Static unless 

the application will be performing simultaneous* Demand Mode DMA reads and writes on an HPDI32 whose 

firmware supports only a single DMA channel. Otherwise the parameter should be set to Dynamic. If the 

Miscellaneous Features parameter reports that the DMA Channel 1 feature is supported, then the HPDI32 can 

perform bi-directional Demand Mode DMA*. 

The I/O DMA Priority parameter (page 77) is a factor only when performing simultaneous* reads and writes using 

either form of DMA. Under these circumstances, if the I/O DMA Priorities are the same for both I/O directions, 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

30 

General Standards Corporation, Phone: (256) 880-8787 
 

either enabled or disabled, then a rotating priority scheme is adopted. Since the HPDI32 cannot perform 

bidirectional data transfer over the cable interface, the setting of this parameter should not have a noticeable affect 

on overall performance. 

* Here, simultaneous and bi-directional refer to data transfer over the PCI bus, not the external cable interface. 

2.7.5. DMA Based I/O Requests 

The two DMA engines on the HPDI32 are each limited to transfers of 8,388,607 bytes. That is one byte shy of 8-

megabytes. For 32-bit samples this translates to a transfer limit of 8,388,604 bytes, or 2,097,151 samples. For 16-bit 

samples this translates to a transfer limit of 8,388,606 bytes, or 4,194,303 samples. The API breaks all DMA 

requests into smaller requests based on these limits. So, if an application made a request for 8MB using 32-bit 

samples, the API would break that into one request for (8M - 4) bytes and another request for four bytes. 

Application should therefore consider making DMA requests smaller than, or a multiple of the size limit for the 

particular sample size in use. 

NOTE: The DMA engine limitations do not restrict the size of the I/O requests that applications 

may make of the API. These limitations apply only to the API’s processing of such requests and 

are noted here only to assist applications in achieving the highest possible efficiencies. The API’s 

I/O request size limitation is based on the macro GSC_IO_STATUS_COUNT_MASK, which limits 

requests to approximately 256MB. 

2.7.6. PIO Threshold 

Both forms of DMA based I/O require a certain amount of overhead for setup, maintenance and shutdown. For large 

requests this is a small price to pay for dramatic performance gains. For smaller requests however DMA could 

actually be slower than using the PIO mode. To help maximize performance, particularly in cases when DMA 

requests may very in size, the I/O PIO Threshold parameter handles an automatic switchover to PIO. The switchover 

has no performance penalty and operates by using PIO mode when I/O requests are at or below the configured level. 

See “I/O Parameter: PIO Threshold” on page 78. 

2.7.7. I/O Timeout 

In general the timeout settings should be made so that they expire only when something has gone wrong (see 

exception below). This is not critical with PIO, but it is with DMA. With PIO transfers, a timeout has no 

consequence except to cause the API to transfer no additional data. In this case no data is lost and an exact 

accounting of the amount of data transferred is accurately maintained. With DMA transfers, a timeout results in the 

DMA engine aborting the transfer midstream. For the HPDI32 this means that the amount of data that was 

successfully transferred in that request is unknown. With Non-Demand Mode DMA, whether Automatic or Manual, 

since they tend to complete very quickly, there is little chance of a timeout. For example, a 128K sample request 

should complete in as little as 5μs, making it unlikely that a timeout will occur midstream. With Demand Mode 

DMA the chances of a timeout during the transfer are much more likely. This is because transfers can last for very, 

very long periods. No matter which DMA form is used, if a timeout is encountered, the amount of data transferred in 

that request will be unknown. See “I/O Parameter: Timeout” on page 80. 

The exception to the above guidelines is with a timeout of zero (0). A timeout of zero tells the API to transfer what 

is available right now and return. This is trivial for PIO since it simply returns when no additional data can be 

transferred. However, DMA transfers occur in the background and individual, smaller transfers occur based upon 

the FIFO fill level. This may result in inefficient use of DMA, but it does observe the zero timeout exception. 

Otherwise most DMA transfers would always timeout since the timeout check occurs just as the DMA is started. 

NOTE: Applications should avoid setting the timeout limit to zero (0) when using any form of 

DMA. Doing so may result is inefficient use of DMA and it may be noticeable slower than 

expected. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

31 

General Standards Corporation, Phone: (256) 880-8787 
 

2.7.8. I/O Data Transfer Modes 

The API Library offers three data transfer modes. Each has its pros and cons, which are described briefly below. For 

additional information refer to “I/O Parameter: Mode” on page 77. 

Mode Description 

PIO This mode uses repetitive register accesses to perform transfers and is capable of transfer 

rates over 20MB/s. 

Pros: It is the most reliable mode offered. It is well suited for any size I/O request. 

This mode can be used with 8-bit, 16-bit and 32-bit data. This mode should 

never return a failure status for valid requests. 

Cons: It is very inefficient. 

DMA (Automatic) This mode uses non-Demand Mode DMA, which transfers data without regard to the 

FIFO’s content. This mode also has the I/O DMA Control Mode parameter set to 

Automatic. While the actual transfers are performed blindly, the API guarantees data 

integrity by examining the FIFOs and breaking the request into smaller, appropriately 

sized chunks. See “I/O Parameter: DMA Control Mode” on page 76. 

Pros: This is the DMA option least likely to encounter an I/O timeout. It is well suited 

for any size I/O request. See note below. This mode can be used with 8-bit, 16-

bit and 32-bit data. 

Cons: It uses DMA inefficiently due to making multiple smaller transfers. If an I/O 

timeout is encountered, the amount of data may be more than the amount 

reported. See note below. This mode could return a failure status, depending on 

system or HPDI32 resources. 

DMA (Manual) This mode uses non-Demand Mode DMA, which transfers data without regard to the 

FIFO’s content. This mode also has the I/O DMA Control Mode parameter set to 

Manual. Because the data is transferred blindly, the application is responsible for 

maintaining data integrity by making requests that won’t overrun or under run the 

respective FIFOs. See “I/O Parameter: DMA Control Mode” on page 76. 

Pros: This is less likely to encounter an I/O timeout than Demand Mode DMA. It is 

best suited for I/O requests not exceeding the size of the respective FIFO. See 

note below. This mode can be used with 8-bit, 16-bit and 32-bit data. 

Cons: This requires the most effort on the part of the application. If there is an I/O 

timeout, the amount of data transferred is unknown. See note below. This mode 

could return a failure status, depending on system or HPDI32 resources. 

Demand Mode DMA This uses the DMA engine’s Demand Mode DMA option, which performs the transfer 

according to the respective FIFO’s fill level. 

Pros: This is the most efficient mode offered, especially for very large transfers. 

Cons: If there is an I/O timeout, the amount of data transferred is unknown. See note 

below. This mode could return a failure status, depending on system or HPDI32 

resources. 

NOTE: If an I/O timeout period expires while the DMA engine is performing a transfer, the 

transfer is aborted and the amount of data transferred will be unknown. 

2.7.8.1. DMA (Manual) 

This refers to the DMA I/O mode with the Manual DMA Control Mode setting. Refer to “I/O Parameter: Mode” on 

page 77 and “I/O Parameter: DMA Control Mode” on page 76. 

For write operations, maximum efficiency can generally be achieved when the below conditions are met. The 

general purpose of these conditions is to make it possible to maintain continuous data transmission over a given time 

period in the most efficient manner possible. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

32 

General Standards Corporation, Phone: (256) 880-8787 
 

1. Use the transmit FIFO’s Almost Full status as a stimulus to queue additional data for subsequent write 

operations. The amount of data that needs to be queued is generally a function of the data transfer rate, the 

period of time over which the rate is to be maintained, the amount of data to be transmitted in the allotted 

period, the amount of time needed to make the data available for queuing, and application, driver and 

system overhead. Since the Almost Full status doesn’t affect data transfer into the Tx FIFO, the fill level 

can be set strictly according to application needs. 

2. Use the transmit FIFO’s Almost Empty status as a stimulus to perform a write operation. The amount of 

data submitted in each request should be the size of the transmit FIFO minus the Almost Empty value. 

Since the Almost Empty status doesn’t affect Tx FIFO data transfer, the fill level can be set strictly 

according to application needs. It is desirable though to set the Almost Empty status level as low as 

possible to assist in overall system efficiency. In contrast however, the status level should be set high 

enough to prevent the FIFO from becoming empty before the write operation begins, thus preventing a 

lapse in data transmission due to an empty FIFO. 

For read operations, maximum efficiency can generally be achieved when the following conditions are met. The 

general purpose of these conditions is to make it possible to maintain continuous data reception over a given time 

period in the most efficient manner possible. 

1. Use the receive FIFO’s Almost Full status as a stimulus to perform a read operation. The amount of data 

requested in each request should be the size of the receive FIFO minus the Almost Full value. Since the 

Almost Full status doesn’t affect Rx FIFO data transfer, the fill level can be set strictly according to 

application needs. It is desirable though to set the Almost Full status level as low as possible to assist in 

overall system efficiency. In contrast however, the status level should be set high enough to prevent the 

FIFO from becoming full before the read operation begins, thus preventing loss of data or a halt to data 

reception due to a full FIFO. 

2.7.8.2. Demand Mode DMA 

This mode is intended for data transfers that exceed the size of the respective FIFO and uses the FIFO fill levels to 

control data movement during transfers between the host and the HPDI32. While the FIFOs can hold up to 128K 

data values, Demand Mode DMA reads and writes may typically entail requests for millions of data values in a 

single call. For write operations, the data transfer rate into the Tx FIFO peaks while the FIFO is not Almost Full. 

While the FIFO is Almost Full the transfer rate slows slightly (to maintain reliability). No data transfer occurs while 

the FIFO is Full. For read operations, the data transfer rate out of the Rx FIFO peaks while the FIFO is not Almost 

Empty. While the FIFO is Almost Empty the transfer rate slows slightly (to maintain reliability). No data transfer 

occurs while the FIFO is Empty. Refer to “I/O Parameter: Mode” on page 77. 

2.7.9. FIFO Almost Levels 

The FIFO Almost Levels and the FIFO status bits they drive basically have two uses; event notification and data 

flow control. For event notification the levels should be configured as close to the empty or full condition being 

monitored as possible. In general, with variable or large sized I/O requests, performance increases as the setting 

levels are reduced. This is because it affords fewer transfers and larger transfer sizes (things run more efficiently). 

This however is highly application dependent. For data flow control, things are less variable. For data transmission 

using Demand Mode DMA, data movement into the Tx FIFO slows slightly when the Almost Full level is reached. 

This helps insure data integrity near the Tx FIFO Full state. For data reception, data movement out of the Rx FIFO 

slows when the fill level hits the Rx FIFO Almost Empty state. This helps insure data integrity near the Rx FIFO 

Empty state. In addition, the Rx FIFO Almost Full state drives the cable’s Rx Ready signal. This gives the remote 

device time to halt data transfer before an Rx FIFO Overrun occurs. Refer to “FIFO Parameter: Almost Level” on 

page 68.  



HPDI32, Software Development Kit 6.1.0, Reference Manual 

33 

General Standards Corporation, Phone: (256) 880-8787 
 

2.7.10. Flow Control 

For transmit operations, flow control defaults to fully automatic local control. This is achieved by having the Auto 

Start parameter enabled (page 19), the Auto Stop parameter disabled (page 19), and the Remote Throttle parameter 

disabled (page 20). With this setup applications can send data out the board essentially by just enabling the 

transmitter then calling hpdi32_write() (page 62). If however, the Auto Start parameter is disabled, then 

applications must use the Flow Control parameter (page 20) to forcibly start and stop the flow of data over the cable. 

Applications must also factor this into the I/O Timeout parameter setting and must supply data at a rate sufficient to 

prevent the Tx FIFO from running empty. 

For remote control of transmission data flow, the Remote Throttle parameter must be enabled (page 20). Also, the 

Rx Ready signal (page 18) must be configured for Flow Control, its default. When this is done the remote device 

drives the Rx Ready signal to permit or inhibit data transfer. With this setup applications accommodate transmission 

by enabling the transmitter then calling hpdi32_write() (page 62). Here to, applications must factor this 

configuration into the I/O Timeout parameter setting and must supply data at a rate sufficient to prevent the Tx FIFO 

from running empty. 

Local control of receive data flow is handled automatically by the HPDI32. Applications essentially need only 

enable the receiver then call hpdi32_read() (page 55) to retrieve collected data. Application responsibility here 

must be to retrieve data at a rate sufficient to prevent the Rx FIFO from running either Full or Almost Full. The 

result of the Rx FIFO becoming Full is the probable loss of data due to an Rx FIFO Overrun condition. The result of 

the Rx FIFO becoming Almost Full is the halt to data flow since the HPDI32 applies this to the cable’s Rx Ready 

signal, thus directing the remote device to stop supplying data. If the application cannot read data fast enough, then 

either data flow will pause or data will be lost. 

The HPDI32 does not have a cable signal dedicated to local control of receive data flow. To implement this type 

control, an application must configure one of the dual function cable signals as GPIO output. Software can then 

manipulate that output as appropriate to command the remote device to commence or cease data flow. As in the 

above scenarios, applications must account for this operation when setting the I/O Timeout parameter. 

2.7.11. Direct Register Access 

While direct access to the HPDI32 firmware register can contribute to a performance gain, there is virtually no gain 

to an application using this feature for I/O purposes, even for Non-Demand Mode DMA under Manual operation. 

The reason is because the API uses direct register access at all times, when possible. This is done automatically for 

performance reasons and occurs unless the application disables the Miscellaneous GSC Register Mapping 

parameter. If this is done, then direct access is available to neither the API nor the application. Refer to 

“Miscellaneous Parameter: GSC Register Mapping” on page 86 and “Miscellaneous Parameter: GSC Register 

Mapping Pointer” on page 87. 

2.8. Event Notification 

The API Library supports event notification for two sources or types of events. They include Interrupt Notification 

and I/O Completion Notification and operate independently. Notification for both sources includes both a callback 

mechanism and a wait mechanism. All are described below. Interrupt Notification is driven by interrupts generated 

by the HPDI32 from any of the interrupt sources identified in the Interrupt Control Register (HPDI32_ICR). I/O 

Completion Notification is associated with completed I/O requests. This applies to both blocking and overlapped 

I/O, and occurs no matter the outcome of the I/O request (i.e. successful transfer or not). 

2.8.1. Event Callback 

Using the callback mechanism each notification source can be assigned a callback function. Each source can have a 

single callback with an application specific value passed as an argument.  Callbacks can be assigned to any source 

and in any combination desired. If a given callback is associated with multiple sources, then multiple callbacks will 

be made as the different events occur. So, for example, if a single callback is assigned to two different interrupts, 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

34 

General Standards Corporation, Phone: (256) 880-8787 
 

then the callback function will be called separately for each interrupt, as often as each occurs. Since each source is 

associated with its own callback context, a thread context, such callbacks must support multithreaded operation. 

Applications are free to reconfigure callbacks during a callback context, but the callback for a given event must 

return before subsequent callback notification can occur for that same event. The prototype required for all callbacks 

is the data type hpdi32_callback_func_t (page 42). The three arguments to the callback are each U32 data 

types. Application must cast the values given to their respective types, which are described below. Refer to 

“Interrupt Parameter: Callback Function” on page 82 and “Interrupt Parameter: Callback Argument” on page 81. 

2.8.1.1. Interrupt Notification Callback 

The callback function arguments are described in the following table. The values received during the callback must 

be cast according to the data types specified. 

Argument Cast Description 

arg1 void* This is the device handle received from hpdi32_open() (page 54). 

arg2 U32 This is the specific “which” bit for the interrupt that produced the callback. Refer to the 

HPDI32_WHICH_IRQ_XXX macros (page 38). 

arg3 U32 This is an application specific argument. This is the Interrupt Callback Argument 

parameter. 

2.8.1.2. I/O Completion Notification Callback 

The callback function arguments are described in the following table. The values received during the callback must 

be cast according to the data types specified. 

Argument Cast Description 

arg1 void* This is the device handle received from hpdi32_open() (page 54) 

arg2 U32 This is the applicable I/O status data. Refer to the GSC_IO_STATUS_XXX macros (page 

38). 

arg3 U32 This is an application specific argument. This is the I/O Callback Argument parameter. 

2.8.2. Event Waiting 

The waiting mechanism operates by blocking the calling thread until any one of a number of referenced events 

occurs. The calling thread is resumed when the first of the referenced events occurs, or when a timeout limit expires, 

whichever occurs first. The time limit is passed as an argument to the wait service. Threads can wait on any number 

or combinations of interrupts, or either or both I/O directions, but the two sources cannot be combined. Also, any 

number of threads can wait on identical or different events. All are resumed when a referenced event occurs. Refer 

to “hpdi32_io_wait()” on page 51 and “hpdi32_irq_wait()” on page 52. 

 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

35 

General Standards Corporation, Phone: (256) 880-8787 
 

3. Macros 

The HPDI32 API includes the following macros. The headers also contain various other utility type macros, which 

are provided without documentation. Parameter support macros are not presented in this subsection. These macros 

are described in section 6 beginning on page 65. 

3.1. API Version Number 

This macro defines the version number of the API’s executable interface. It does not refer to the SDK version 

number, the API Library version number or the Device Driver version number. Applications pass this value to the 

function hpdi32_api_status() (page 44), which is used to verify that the application and the library are 

compatible. 

Macros Description 

HPDI32_API_VERSION This is the API’s overall version number.  

3.2. Common Parameter Assignment Values 

The below macros define universal values understood by all parameters to have special meanings, as given below. 

Any time a parameter assignment request is being carried out, use of these macros as the assignment value will 

produce the results given here. 

Macros Description 

GSC_DEFAULT Set the parameter to its default state/value. This is equivalent to using the explicitly defined 

default macro for the respective parameter. 

GSC_NO_CHANGE Do not change the parameter’s state/value. Since parameter access follows a set-then-get 

model, this value can be used to achieve a get only operation. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_io_tx_timeout_reset(void* handle, int verbose) 

{ 

 unsigned long get; 

 U32    status; 

 

 // Reset the Tx I/O timeout period to its default. 

 status = hpdi32_config(handle, 

       HPDI32_IO_TIMEOUT, 

       HPDI32_WHICH_TX, 

       GSC_DEFAULT, 

       &get); 

 

 if (!verbose) 

 { 

 } 

 else if (status == GSC_SUCCESS) 

 { 

  printf("hpdi32_config() failure: %ld\n", (long) status); 

 } 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

36 

General Standards Corporation, Phone: (256) 880-8787 
 

 else 

 { 

  printf("Tx Timeout: %lu seconds\n", (long) get); 

 } 

 

 return(status); 

} 

 

 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_io_tx_timeout_get( 

 void*   handle, 

 unsigned long* timeout_secs, 

 int    verbose) 

{ 

 U32 status; 

 

 // Retrieve the Tx I/O timeout period without changing it. 

 status = hpdi32_config(handle, 

       HPDI32_IO_TIMEOUT, 

       HPDI32_WHICH_TX, 

       GSC_NO_CHANGE, 

       timeout_secs); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf("hpdi32_config() failure: %ld\n", (long) status); 

 } 

 else 

 { 

  printf("Tx Timeout: %lu seconds\n", (long) timeout_secs[0]); 

 } 

 

 return(status); 

} 

 

 

3.3. Discrete Data Type Options 

The below macros are defined by application code as needed to disable declarations for and size validation for the 

data types S8, U8, S16, U16, S32 and U32. The API declares these data types by default, but applications can 

disable this as needed. 

Macros Description 

GSC_DATA_TYPES_CHECK If the API declares the data types and the application defines this macro, 

then the data type sizes will be validated during the application’s build 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

37 

General Standards Corporation, Phone: (256) 880-8787 
 

process. This macro should only be defined if the compiler in use 

supports the sizeof() macro during preprocessing. 

GSC_DATA_TYPES_NOT_NEEDED Applications should define this macro before including hpdi32_api.h 

to disable the declarations for these data types.  

3.4. I/O Status Fields 

This set of macros applies to the 32-bit value reported when requesting the status of an I/O operation. The value 

reported includes a direction bit, a status field and a count field. The completion status of the operation is obtained 

by looking only at the GSC_IO_STATUS_MASK bits from the I/O status value. All other bits refer to other than the 

completion status. The accompanying sample code illustrates how the I/O status could be utilized. 

Fields Description 

GSC_IO_STATUS_COUNT_MASK This macro applies to the count field, which covers the lower set of status 

bits. The count is zero while the operation is in progress and, once ended, 

indicates the number of bytes successfully transferred. This macro also 

identifies the maximum number of bytes that can be transferred in a single 

I/O request. The count is only guaranteed to be accurate when an operation 

completes with all data being successfully transferred. 

GSC_IO_STATUS_MASK This macro applies to the I/O completion status field. Apply this mask to 

the I/O status value (bitwise AND) to get the completion status. Supported 

completion status values are given in the below table. 

GSC_IO_STATUS_TX If this bit is set then the operation was from a write request to the device. If 

not set, then the operation was a read request from the device. 

The following defines the I/O completion status options. These values are obtained by performing a bitwise AND of 

the overall status with the I/O completion status mask above. 

Macros Description 

GSC_IO_STATUS_ABORTED This indicates that the operation ended due to an abort request. This arises 

either from an application’s explicit abort request, or from a reset or 

initialization request. The count field may be inaccurate when this status is 

reported. 

GSC_IO_STATUS_ACTIVE This indicates that the operation is still in progress. If the status is other than 

this value, then the I/O operation is no longer in progress. 

GSC_IO_STATUS_ERROR This indicates that the operation ended due to an error condition, which can 

arise for any number of reasons. The count field may be inaccurate when this 

status is reported. 

GSC_IO_STATUS_SUCCESS This indicates that the operation completed successfully. The count field is 

accurate when this status is reported. 

GSC_IO_STATUS_TIMEOUT This indicates that the operation ended because the timeout period lapsed. The 

count field may be inaccurate when this status is reported. 

Example 

#include "hpdi32_dsl.h" 

 

long hpdi32_dsl_io_status_evaluate(U32 io_status) 

{ 

 long bytes; 

 U32  status = io_status & GSC_IO_STATUS_MASK; 

 

 if (status == GSC_IO_STATUS_ACTIVE) 

 { 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

38 

General Standards Corporation, Phone: (256) 880-8787 
 

  // The operation is still active. 

  bytes = 0; 

 } 

 else if (status == GSC_IO_STATUS_SUCCESS) 

 { 

  // No operation has been requested. 

  bytes = (long) (io_status & GSC_IO_STATUS_COUNT_MASK); 

 } 

 else if (status == GSC_IO_STATUS_TIMEOUT) 

 { 

  // The timeout period lapsed. 

  // The count may not be accurate. 

  bytes = -1; 

 } 

 else if (status == GSC_IO_STATUS_ERROR) 

 { 

  // There was an error. 

  // The count may not be accurate. 

  bytes = -1; 

 } 

 else if (status == GSC_IO_STATUS_ABORTED) 

 { 

  // The operation was aborted. 

  // The count may not be accurate. 

  bytes = -1; 

 } 

 else 

 { 

  // Unknown status. 

  bytes = -1; 

 } 

 

 return(bytes); 

} 

 

 

3.5. Maximum Number of Open Handles 

This macro defines the maximum number of device handles that can be opened at any one time. All open handles 

are unique even if they refer to the same device, though handles are reused once closed. 

Macros Description 

GSC_PROCESS_OPEN_MAX This defines the maximum number of open handles. 

3.6. Parameter Access “Which” Bits 

The table below lists the set of selection bits that may be set when a configuration parameter is modified or 

accessed. They are referred to as “which” bits in that they specify the objects which the parameter is to access. 

When appropriate, bits within the same category may be bitwise or’d in order to apply the action to multiple objects. 

For retrieval purposes, only the data for the last object successfully accessed is retrieved. The bits’ use is explained 

along with the parameters that each is associated with, and appears in subsequent portions of this document. 

NOTE: The interrupt related “which” bits include both general and specific definitions for those 

cable signals which may have dual functionality. These are for reference and usability purposes 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

39 

General Standards Corporation, Phone: (256) 880-8787 
 

only and do not refer to different interrupts. In addition, use of any particular definition will not 

alter which functionality is active at any particular time. 

NOTE: Some of the “which” bit macros end with an underscore (“_”). This is added to convey to 

users that the respective cable signals are dual function; data Flow Control and GPIO. The 

respective cable signals are also represented by additional macros representing the specific 

functionalities. 

Macros Description 

HPDI32_WHICH_AE This specifies the Almost Empty level for the FIFOs. * 

HPDI32_WHICH_AF This specifies the Almost Full level for the FIFOs. * 

HPDI32_WHICH_COMMAND_0_ This specifies the Cable Command 0, which may be either Frame Valid or 

GPIO 6. * 

HPDI32_WHICH_COMMAND_1_ This specifies the Cable Command 1, which may be either Line Valid or 

GPIO 0. * 

HPDI32_WHICH_COMMAND_2_ This specifies the Cable Command 2, which may be either Status Valid or 

GPIO 1. * 

HPDI32_WHICH_COMMAND_3_ This specifies the Cable Command 3, which may be either Rx Ready or 

GPIO 2. * 

HPDI32_WHICH_COMMAND_4_ This specifies the Cable Command 4, which may be either Tx Ready or 

GPIO 3. * 

HPDI32_WHICH_COMMAND_5_ This specifies the Cable Command 5, which may be either Tx Enabled or 

GPIO 4. * 

HPDI32_WHICH_COMMAND_6_ This specifies the Cable Command 6, which may be either Rx Enabled or 

GPIO 5. * 

HPDI32_WHICH_IRQ_C0A_ This specifies the Cable Command 0 interrupt that defaults to triggering 

when the signal is active. This refers either to the Frame Valid Begin or 

GPIO 6 High. 

HPDI32_WHICH_IRQ_C0I_ This specifies the Cable Command 0 interrupt that defaults to triggering 

when the signal is inactive. This refers either to the Frame Valid End or 

GPIO 6 Low. 

HPDI32_WHICH_IRQ_C1_ This specifies the Cable Command 1 interrupt, which refers either to Line 

Valid or GPIO 0. 

HPDI32_WHICH_IRQ_C2_ This specifies the Cable Command 2 interrupt, which refers either to Status 

Valid or GPIO 1. 

HPDI32_WHICH_IRQ_C3_ This specifies the Cable Command 2 interrupt, which refers either to Tx 

Ready or GPIO 2. 

HPDI32_WHICH_IRQ_C4_ This specifies the Cable Command 2 interrupt, which refers either to Rx 

Ready or GPIO 3. 

HPDI32_WHICH_IRQ_C5_ This specifies the Cable Command 2 interrupt, which refers either to Tx 

Enabled or GPIO 4. 

HPDI32_WHICH_IRQ_C6_ This specifies the Cable Command 2 interrupt, which refers either to Rx 

Enabled or GPIO 5. 

HPDI32_WHICH_IRQ_RX_AE This specifies the Rx FIFO Almost Empty interrupt. 

HPDI32_WHICH_IRQ_RX_AF This specifies the Rx FIFO Almost Full interrupt. 

HPDI32_WHICH_IRQ_RX_E This specifies the Rx FIFO Empty interrupt. 

HPDI32_WHICH_IRQ_RX_F This specifies the Rx FIFO Full interrupt. 

HPDI32_WHICH_IRQ_TX_AE This specifies the Tx FIFO Almost Empty interrupt. 

HPDI32_WHICH_IRQ_TX_AF This specifies the Tx FIFO Almost Full interrupt. 

HPDI32_WHICH_IRQ_TX_E This specifies the Tx FIFO Empty interrupt. 

HPDI32_WHICH_IRQ_TX_F This specifies the Tx FIFO Full interrupt. 

HPDI32_WHICH_RX This specifies that the receiver is to be accessed, such as the Rx FIFO. * 

HPDI32_WHICH_TX This specifies that the transmitter is to be accessed, such as the Tx FIFO. * 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

40 

General Standards Corporation, Phone: (256) 880-8787 
 

* Other macros are also defined that include other logical combinations or representations of some bits. Additional 

macros may also be defined using alternate representations of the same source. For example, Cable Command 0 is 

also referred to as Frame Valid and GPIO 6. 

3.7. Registers 

The following tables give the complete set of HPDI32 registers. The tables are divided by register categories. There 

are PCI registers which differ slightly between the 32-bit and the 64-bit boards, PLX feature set registers which also 

differ slightly between the 32-bit and the 64-bit boards, and there are GSC firmware based registers. The PCI 

registers and the PLX registers are provided by the PCI interface chips used on the HPDI32. Applications have read 

access to all registers, but write access only to the GSC firmware registers. 

3.7.1. GSC Registers 

The following table gives the complete set of GSC specific HPDI32 registers. For detailed definitions of these 

registers refer to the applicable HPDI32 User Manual. 

Macros Description 

HPDI32_BCR Board Control Register (BCR) 

HPDI32_BSR Board Status Register (BSR) 

HPDI32_FDR FIFO Data Register (FDR) 

HPDI32_FRR Firmware Revision Register (FRR) 

HPDI32_FSR Feature Set Register (FSR) 

HPDI32_ICR Interrupt Control Register (ICR) 

HPDI32_IELR Interrupt Edge/Level Register (IELR) 

HPDI32_IHLR Interrupt High/Low Register (IHLR) 

HPDI32_ISR Interrupt Status Register (ISR) 

HPDI32_RAR Rx Almost Register (RAR) 

HPDI32_RFSR Rx FIFO Size Register (RFSR) 

HPDI32_RFWR Rx FIFO Words Register (RFWR) 

HPDI32_RLCR Rx Line Counter Register (RLCR) 

HPDI32_RSCR Rx Status Counter Register (RSCR) 

HPDI32_TAR Tx Almost Register (TAR) 

HPDI32_TCDR Tx Clock Divider Register (TCDR) 

HPDI32_TFSR Tx FIFO Size Register (TFSR) 

HPDI32_TFWR Tx FIFO Words Register (TFWR) 

HPDI32_TLILCR Tx Line Invalid Length Count Register (TLILCR) 

HPDI32_TLVLCR Tx Line Valid Length Count Register (TLVLCR) 

HPDI32_TSVLCR Tx Status Valid Length Count Register (TSVLCR) 

3.7.2. PLX PCI9080 PCI Configuration Registers 

These registers are not listed as they are seldom used at the application level. 

3.7.3. PLX PCI9080 Feature Set Registers 

These registers are not listed as they are seldom used at the application level. 

3.7.4. PLX PCI9656 PCI Configuration Registers 

These registers are not listed as they are seldom used at the application level. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

41 

General Standards Corporation, Phone: (256) 880-8787 
 

3.7.5. PLX PCI9656 Feature Set Registers 

These registers are not listed as they are seldom used at the application level. 

3.8. Version Data Selectors 

This set of macros is used when requesting a version number and indicates which version number is desired. The 

macros are passed as the id argument to the hpdi32_version_get() function (see page 61). The second table 

below lists utility macros used to retrieve each of the respective version numbers. In the second table, the argument 

h refers to the handle used to access the device, the b refers to an application buffer where the version string is 

recorded, and the s is the size of that buffer. 

Macros (Values) Description 

GSC_VERSION_LIBRARY This requests the library’s version number. 

GSC_VERSION_DRIVER This requests the driver’s version number. 

 

Macro (Services) Description 

HPDI32_VERSION_GET_LIBRARY(h,b,s) This requests the version number for the API Library. 

HPDI32_VERSION_GET_DRIVER(h,b,s) This requests the version number for the Device Driver. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

42 

General Standards Corporation, Phone: (256) 880-8787 
 

4. Data Types 

The interface includes the following data types. 

4.1. Discrete Data Types 

The following discrete data types are defined and used by the API. If an HPDI32 application includes other headers 

which also define these types, then the API can be directed to omit these definitions. This is done by defining the 

macro GSC_DATA_TYPES_NOT_NEEDED before including the API header. The alternate definitions must 

however define these types as listed in the below table. 

Data Type Description 

S8 This is an 8-bit signed integer. 

U8 This is an 8-bit unsigned integer. 

S16 This is a 16-bit signed integer. 

U16 This is a 16-bit unsigned integer. 

S32 This is a 32-bit signed integer. 

U32 This is a 32-bit unsigned integer. 

4.2. hpdi32_callback_func_t 

This is the data type required for all event notification callback functions. This applies both to Interrupt Notification 

callbacks and I/O Completion callbacks. 

Definition 

typedef void (*hpdi32_callback_func_t)(U32 arg1, U32 arg2, U32 arg3); 

Arguments Description 

arg1 This is the device handle cast to a U32 data type. 

arg2 For Interrupt Notification this is the HPDI32_WHICH_XXX bit for the respective 

interrupt. For I/O Completion Notification this is the applicable GSC_IO_STATUS_XXX 

status components. 

arg3 This is any arbitrary application supplied data value. 

4.3. Status Values 

This unnamed enumerated data type lists all possible status values returnable from API service calls. The 

enumerated values represent common definitions used across all of GSC’s PLX based API Libraries and many 

values will never be encountered when using the HPDI32 API Library. The table below gives brief descriptions for 

many values and omits those that should never be seen with the API. The most common value encountered is 

GSC_SUCCESS and indicates the request was completed successfully. 

Definition 

typedef enum 

{ 

 … 

}; 

Values Description 

GSC_ABORTED An I/O operation was aborted due to a user’s explicit or 

implicit request. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

43 

General Standards Corporation, Phone: (256) 880-8787 
 

GSC_ACCESS_DENIED The operation failed because access to a device, service or 

system resource or service was denied. 

GSC_DMA_CHANNEL_UNAVAILABLE An operation failed because a DMA channel was unavailable. 

GSC_FAILED An operation failed in a non-specific manner. 

GSC_INIT_FAILURE API Library initialization failed. 

GSC_INSUFFICIENT_RESOURCES An operation failed because insufficient OS resources were 

available. 

GSC_INVALID_API_HANDLE An operation failed because the application supplied an 

invalid device handle. API device handles are API specific 

resources and are of no meaning to the OS. 

GSC_INVALID_DATA An operation failed because invalid data was provided. 

GSC_INVALID_VERSION_API API Library initialization failed because the API Library 

version was incompatible. This refers either to the API’s 

version number or the GSC revision level. The version data 

can still be retrieved when this status is seen. 

GSC_INVALID_VERSION_DRIVER API Library initialization failed because the Device Driver 

version was incompatible. This refers either to the driver’s 

version number or the GSC revision level. The version data 

can still be retrieved when this status is seen. 

GSC_NULL_PARAM An operation failed because an argument was NULL. 

GSC_SUCCESS An operation completed successfully. 

GSC_THREAD_FAILURE An operation (hpdi32_open()) failed because a support 

thread could not be started. 

GSC_TOO_MANY_OPEN_HANDLES An operation (hpdi32_open()) failed because the 

application attempted too many simultaneous device 

accesses. 

GSC_UNSUPPORTED_FUNCTION An operation failed because the application requested a 

service that is unsupported or unimplemented. 

GSC_WAIT_TIMEOUT An operation completed because a timeout period lapsed. 

GSC_WAIT_CANCELED An operation waiting for an event ended prematurely. This 

usually means the application was terminated while waiting 

for the event.  



HPDI32, Software Development Kit 6.1.0, Reference Manual 

44 

General Standards Corporation, Phone: (256) 880-8787 
 

5. Functions 

The HPDI32 API includes the following functions. The SDK interface also includes a number of function style 

macro definitions. These macros are described in section 6 beginning on page 65. 

5.1. hpdi32_api_status() 

This function is the entry point to determine the status of the API Library. This must be the very first call into the 

API and determines the usability of the API Library and the Device Driver. If the initial status obtained is other than 

GSC_SUCCESS, then only a limited portion of the API is functional. If not fully usable, then both values returned 

may be useful in resolving the situation. Thereafter, the status obtained might vary if the API encounters irregular 

circumstances. 

Prototype 

U32 hpdi32_api_status(U32* stat, U32* arg, U32 api_ver); 

Argument Description 

stat The API records the current API status here, which can change during use. The pointer 

must not be NULL. 

arg The API records auxiliary status information here, which can change during use. This 

value should be related to the above reported status. The pointer must not be NULL. 

api_ver This must be the version number of the API the application was written for. If this number 

does not match, then the API is unusable by the application. 

 

Return Value Description 

GSC_SUCCESS The operation succeeded (the status was retrieved). 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_api_status(int verbose) 

{ 

 U32 arg; 

 U32 stat; 

 U32 status; 

 

 status = hpdi32_api_status(&stat, &arg, HPDI32_API_VERSION); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf("hpdi32_api_status() failure: %ld\n", (long) status); 

 } 

 else 

 { 

  status = stat; 

  printf("API Status:\n"); 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

45 

General Standards Corporation, Phone: (256) 880-8787 
 

  printf("  Status:   0x%lX\n", (long) stat); 

  printf("  Argument: 0x%lX\n", (long) arg); 

 } 

 

 return(status); 

} 

 

 

5.2. hpdi32_board_count() 

This function is the entry point to determine the number of HPDI32 boards installed in the system and accessible to 

the API. This service can be called without requiring access to any particular device.  

Prototype 

U32 hpdi32_board_count(U8* count); 

Argument Description 

count The API records the number of board at this location. This pointer must not be NULL. 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_board_count(U8* count, int verbose) 

{ 

 U32 status; 

 

 status = hpdi32_board_count(count); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf( "hpdi32_board_count() failure: %ld\n", 

    (long) status); 

 } 

 else 

 { 

  printf("HPDI32 Board Count: %d\n", (int) count[0]); 

 } 

 

 return(status); 

} 

 

 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

46 

General Standards Corporation, Phone: (256) 880-8787 
 

5.3. hpdi32_close() 

This function is the entry point to close a connection to an open HPDI32 board. The function should only be called 

after a successful open of the respective device via hpdi32_open() and must not be used after being closed. 

Before returning, the API returns the device to the same state produced when originally opened. 

Prototype 

U32 hpdi32_close(void* handle); 

Argument Description 

handle This is an API device handle obtained via hpdi32_open(). 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_close(void* handle, int verbose) 

{ 

 U32 status; 

 

 status = hpdi32_close(handle); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf("hpdi32_close() failure: %ld\n", (long) status); 

 } 

 else 

 { 

  printf("Device Closed: 0x%lX\n", (long) handle); 

 } 

 

 return(status); 

} 

 

 

5.4. hpdi32_config() 

This function is the entry point to accessing an individual parameter where all pertinent data is given as separate 

arguments. The function should only be called after a successful open of the respective device via 

hpdi32_open(). 

Prototype 

U32 hpdi32_config( 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

47 

General Standards Corporation, Phone: (256) 880-8787 
 

 void* handle, 

 U32  parm, 

 U32  which, 

 U32  set, 

 U32* get); 

Argument Description 

handle This is an API device handle obtained via hpdi32_open(). 

parm This specifies the parameter to be accessed. 

which This is any number or combination of parameter specific HPDI32_WHICH_XXX bits that 

specify object(s) the parameter is applied to. Many parameters ignore this argument. When 

it is used, a value of zero is acceptable, and merely specifies to access none of the 

corresponding objects. 

set This is the value to apply to the parameter being accessed. The universal value 

GSC_NO_CHANGE specifies that the parameter not be altered and must be used when the 

purpose of the access is to get the current setting. Some parameters are read-only, in which 

case this argument is ignored. 

get After applying any changes to the parameter, its current setting is recorded here. When the 

“which” argument specifies multiple objects, only the last accessed is recorded here. This 

argument may be NULL, in which case the current setting is not retrieved. 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_io_tx_timeout_set( 

 void* handle, 

 U32  timeout_s, 

 int  verbose) 

{ 

 unsigned long get; 

 U32    status; 

 

 status = hpdi32_config(handle, 

       HPDI32_IO_TIMEOUT, 

       HPDI32_WHICH_TX, 

       timeout_s, 

       &get); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf("hpdi32_config() failure: %ld\n", (long) status); 

 } 

 else 

 { 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

48 

General Standards Corporation, Phone: (256) 880-8787 
 

  printf("Tx Timeout:\n"); 

  printf("  Set: 0x%lX\n", (long) timeout_s); 

  printf("  Get: 0x%lX\n", (long) get); 

 } 

 

 return(status); 

} 

 

 

5.5. hpdi32_gpio_mod() 

This function is the entry point to performing a read-modify-write on the cable signals configured for General 

Purpose I/O. Only cable signals configured as GPIO are affected. All non-GPIO cable signals are unaffected. The 

function should only be called after a successful open of the respective device via hpdi32_open(). 

Prototype 

U32 hpdi32_gpio_mod(void* handle, U8 value, U8 mask); 

Argument Description 

handle This is an API device handle obtained via hpdi32_open(). 

value This is the desired value to apply. Bits which are outside the GPIO range or which 

correspond to non-GPIO cable signals are ignored. 

mask This specifies the “value” bits to modify. If a bit is set here, then the corresponding 

“value” bit will be applied. The remaining “value” bits are ignored. Bits which are 

outside the GPIO range or which correspond to non-GPIO cable signals are ignored. 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_gpio_0_mod(void* handle, U8 value, int verbose) 

{ 

 U8 mask = 0x1; 

 U32 status; 

 

 status = hpdi32_gpio_mod(handle, value, mask); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf("hpdi32_gpio_mod() failure: %ld\n", (long) status); 

 } 

 else 

 { 

  printf("GPIO Modify:\n"); 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

49 

General Standards Corporation, Phone: (256) 880-8787 
 

  printf("  Value: 0x%lX\n", (long) value); 

  printf("  Mask:  0x%lX\n", (long) mask); 

 } 

 

 return(status); 

} 

 

 

5.6. hpdi32_gpio_read() 

This function is the entry point to reading the value from the cable signals configured for General Purpose I/O. Only 

cable signals configured as GPIO return actual values. All non-GPIO cable signals are returned as zero. The function 

should only be called after a successful open of the respective device via hpdi32_open(). 

Prototype 

U32 hpdi32_gpio_read(void* handle, U8* value); 

Argument Description 

handle This is an API device handle obtained via hpdi32_open(). 

value The value read is recorded here. Only bits which are inside the GPIO range and which 

correspond to GPIO cable signals return actual values. All others return zero. 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_gpio_read(void* handle, U8* value, int verbose) 

{ 

 U32 status; 

 

 status = hpdi32_gpio_read(handle, value); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf("hpdi32_gpio_read() failure: %ld\n", (long) status); 

 } 

 else 

 { 

  printf("GPIO Read: 0x%lX\n", (long) value[0]); 

 } 

 

 return(status); 

} 

 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

50 

General Standards Corporation, Phone: (256) 880-8787 
 

 

5.7. hpdi32_gpio_write() 

This function is the entry point to writing to the cable signals configured for General Purpose I/O. Only cable signals 

configured as GPIO are affected. All non-GPIO cable signals are unaffected. The function should only be called 

after a successful open of the respective device via hpdi32_open(). 

Prototype 

U32 hpdi32_gpio_write(void* handle, U8 value); 

Argument Description 

handle This is an API device handle obtained via hpdi32_open(). 

value This is the value to write. Only bits which are inside the GPIO range and which correspond 

to GPIO cable signals are affected. All others are unaffected. 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_gpio_write(void* handle, U8 value, int verbose) 

{ 

 U32 status; 

 

 status = hpdi32_gpio_write(handle, value); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf("hpdi32_gpio_write() failure: %ld\n", (long) status); 

 } 

 else 

 { 

  printf("GPIO Write: 0x%lX\n", (long) value); 

 } 

 

 return(status); 

} 

 

 

5.8. hpdi32_init() 

This function is the entry point to return a device and all parameters to the state produced when the device was first 

opened. In doing this, any I/O operations in progress are aborted. This function should only be called after a 

successful open of the respective device via hpdi32_open(). 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

51 

General Standards Corporation, Phone: (256) 880-8787 
 

Prototype 

U32 hpdi32_init(void* handle); 

Argument Description 

handle This is an API device handle obtained via hpdi32_open(). 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_init(void* handle, int verbose) 

{ 

 U32 status; 

 

 status = hpdi32_init(handle); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf("hpdi32_init() failure: %ld\n", (long) status); 

 } 

 else 

 { 

  printf("Device Initialized: 0x%lX\n", (long) handle); 

 } 

 

 return(status); 

} 

 

 

5.9. hpdi32_io_wait() 

This function is the entry point to pause thread execution until an I/O operation completes. The function should only 

be called after a successful open of the respective device via hpdi32_open(). When called, the current thread 

will block until a specified I/O read or write operation completes. The waiting will occur if no I/O operations are 

currently active, or if an I/O operation is active in either blocking or overlapped mode. The call will return as soon 

as the time period expires, or when the first referenced operation completes, whether by an abort request, a failed 

I/O request, a timeout or successful data transfer. There is no limit to the number of threads that may simultaneously 

utilize this service or on the combination of operations that may be referenced. 

Prototype 

U32 hpdi32_io_wait(void* handle, U32 which, U32 timeout_ms); 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

52 

General Standards Corporation, Phone: (256) 880-8787 
 

Argument Description 

handle This is an API device handle obtained via hpdi32_open(). 

which This is any bitwise or’d combination of HPDI32_WHICH_TX or 

HPDI32_WHICH_RX. Set HPDI32_WHICH_TX to wait on a write operation. Set 

HPDI32_WHICH_RX to wait on a read operation. If neither is set the function returns 

immediately with GSC_SUCCESS. 

timeout_ms This is the timeout limit is milliseconds. If an I/O operation does not complete within 

this time period, then the call returns at the end of the period. The timeout period will 

be at least the amount of time specified, but may be longer depending on the OS.  

 

Return Value Description 

GSC_SUCCESS Either no I/O operation was referenced or one of the referenced operations 

completed. No indication is given to indicate which event, if any, caused the 

call to return. 

GSC_WAIT_TIMEOUT The timeout period expired before completion of a referenced I/O operation. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_io_tx_wait(void* handle, U32 timeout_ms, int verbose) 

{ 

 U32 status; 

 

 status = hpdi32_io_wait(handle, HPDI32_WHICH_TX, timeout_ms); 

 

 if (!verbose) 

 { 

 } 

 else if (status == GSC_SUCCESS) 

 { 

  printf("Tx Wait: write operation completed.\n"); 

 } 

 else if (status == GSC_WAIT_TIMEOUT) 

 { 

  printf( "Tx Wait: timeout after %ld milliseconds\n", 

    (long) timeout_ms); 

 } 

 else 

 { 

  printf("hpdi32_io_wait() failure: %ld\n", (long) status); 

 } 

 

 return(status); 

} 

 

 

5.10. hpdi32_irq_wait() 

This function is the entry point to pause thread execution until an interrupt occurs. The function should only be 

called after a successful open of the respective device via hpdi32_open(). When called, the current thread will 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

53 

General Standards Corporation, Phone: (256) 880-8787 
 

block until any one of a specified set of interrupts occurs. The call will return as soon as the time period expires, or 

when the first referenced interrupt occurs, whichever occurs first. There is no limit to the number of threads that may 

simultaneously utilize this service or on the combination of interrupts that may be referenced. 

Prototype 

U32 hpdi32_irq_wait(void* handle, U32 which, U32 timeout_ms); 

Argument Description 

handle This is an API device handle obtained via hpdi32_open(). 

which This is any bitwise or’d combination of HPDI32_WHICH_IRQ_XXX bits. Set the bits 

according to the interrupt of interest. Unreferenced interrupts will have no impact. If 

none are set the function returns immediately with GSC_SUCCESS. 

timeout_ms This is the timeout limit is milliseconds. If an interrupt does not occur within this time 

period, then the call returns at the end of the period. The timeout period will be at least 

the amount of time specified, but may be longer depending on the OS.  

 

Return Value Description 

GSC_SUCCESS Either no interrupts were referenced or one of the referenced interrupts 

occurred. No indication is given to indicate which interrupt, if any, caused the 

call to return. 

GSC_WAIT_TIMEOUT The timeout period expired before a referenced interrupt occurred. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_irq_fifo_full_wait( 

 void* handle, 

 U32  timeout_ms, 

 int  verbose) 

{ 

 U32 status; 

 

 status = hpdi32_irq_wait( handle, 

        HPDI32_WHICH_IRQ_TX_F | 

        HPDI32_WHICH_IRQ_RX_F, 

        timeout_ms); 

 

 if (!verbose) 

 { 

 } 

 else if (status == GSC_SUCCESS) 

 { 

  printf("Tx/Rx FIFO Full Wait: interrupt occurred.\n"); 

 } 

 else if (status == GSC_WAIT_TIMEOUT) 

 { 

  printf( "Tx/Rx FIFO Full Wait: " 

    "timeout after %ld milliseconds\n", 

    (long) timeout_ms); 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

54 

General Standards Corporation, Phone: (256) 880-8787 
 

 } 

 else 

 { 

  printf("hpdi32_irq_wait() failure: %ld\n", (long) status); 

 } 

 

 return(status); 

} 

 

 

5.11. hpdi32_open() 

This function is the entry point to open a connection to an HPDI32 board. This function must be called before any 

other device access functions may be called. If successful, the device and all parameters are initialized to default 

settings. Multiple requests can be made to access the same device, and each can succeed. However, care must be 

taken when doing this as device access via one handle is likely to interfere with the device state maintained by the 

other. Additionally, one handle may configure the device in a way that conflicts with the configuration established 

by the other. 

Prototype 

U32 hpdi32_open(U8 index, void** handle); 

Argument Description 

index This is the zero based index of the board to access. 

handle If the request succeeds, the API records at this address the handle to be used for subsequent 

access to the respective device. This pointer must not be NULL. The pointer returned will 

be NULL if the request fails and non-NULL otherwise. 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_open(U8 index, void** handle, int verbose) 

{ 

 U32 status; 

 

 status = hpdi32_open(index, handle); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf("hpdi32_open() failure: %ld\n", (long) status); 

 } 

 else 

 { 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

55 

General Standards Corporation, Phone: (256) 880-8787 
 

  printf("Device Opened:\n"); 

  printf("  Index:  0x%lX\n", (long) index); 

  printf("  Handle: 0x%lX\n", (long) handle); 

 } 

 

 return(status); 

} 

 

 

5.12. hpdi32_read() 

This function is the entry point to reading received data from an HPDI32. The function should only be called after a 

successful open of the respective device via hpdi32_open(). The operation will be carried out according to the 

current set of receive side I/O Parameters. If the Overlap Enable option is disabled, then the function will block and 

return either when the requested amount of data has been read or when the timeout period has lapsed, which ever 

occurs first. If the Overlap Enable option is enabled, the function will return immediately and the operation will be 

carried out in the background. In this case the application must either use I/O Completion Notification or query the 

receive side I/O Status parameters to determine when the operation completes and how much data was read. The 

service reads up to the requested number of bytes, according to the receive side I/O Data Size parameter (only full 

data values are retrieved). Only a single read operation can be active at a time. If a request is made while a read 

operation is in progress, then the new request will fail. If overlapped I/O is requested and the function returns an 

error status, the overlapped operation may not have been initiated. No matter how an I/O operation ends though, 

even if it could not be started, an I/O completion event will be triggered if at all possible. 

NOTE: If the I/O Overlapped parameter is enabled (permitting background read processing), then 

the I/O buffer handed to hpdi32_read() must remain available until the operation completes. 

Failure to do so will likely result either in stack corruption or a general protection fault. 

NOTE: An Rx Overrun may occur during a read request when using DMA (either Demand Mode 

or Non-Demand Mode) with Application Buffers. Such overruns can arise because of the overhead 

required to prepare the memory for DMA use. To reduce this overhead, reduce the size of the I/O 

request. To eliminate this overhead, use API Buffers for I/O requests. The likelihood of such Rx 

Overruns can be reduced by using larger Rx FIFOs. The likelihood of such Rx Overruns can also 

be reduced by reducing the Rx clock rate. 

NOTE: For those boards without the Single Cycle Disable feature (see the Board Control 

Register) Demand Mode DMA based reads may produce an Rx FIFO Under Run. If this does 

occur, then the failure status GSC_INVALID_DATA will be returned, reflecting that the read 

buffer contains invalid data. On boards with 32-bit PCI interfaces this can occur only when the 

data size is 8-bit or 16-bit. On boards with 64-bit PCI interfaces this can occur with any data size 

setting. 

NOTE: Thoroughly examine the various I/O Parameters to determine the settings required for 

each application. 

NOTE: For DMA based I/O using Application Buffers, the buffer must be both readable and 

writable. This usually means that buffers cannot be declared as const or static const. I/O 

requests will fail if the buffer does not have read/write access. 

NOTE: Applications may make I/O requests of any size. However, the maximum amount of data 

that can be transfer in a single call is approximately 256MB. This upper limit is based on the 

macro GSC_IO_STATUS_COUNT_MASK. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

56 

General Standards Corporation, Phone: (256) 880-8787 
 

Prototype 

U32 hpdi32_read(void* handle, void* buffer, U32 bytes, U32* count); 

Argument Description 

handle This is an API device handle obtained via hpdi32_open(). 

buffer This is where the retrieved data is stored. It must be large enough to store all of the data 

requested and it must remain accessible by the API until the operation completes. The 

pointer must not be NULL. The buffer can be an application allocated buffer or either of 

the API Buffers.  

bytes This is the desired number of bytes to retrieve. The API will limit this to the value 

specified by the macro GSC_IO_STATUS_COUNT_MASK and will round it down to an 

integral multiple of the I/O Data Size parameter. 

count The API records the number of bytes actually transferred here. The value recorded may be 

less than the amount requested due to various factors; request limits, timeout, abort or other 

errors. 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

GSC_WAIT_TIMEOUT The operation timed out before the requested amount of data was received. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_read( 

 void* handle, 

 void* buffer, 

 U32  bytes, 

 U32* count, 

 int  verbose) 

{ 

 U32 status; 

 

 status = hpdi32_read(handle, buffer, bytes, count); 

 

 if (!verbose) 

 { 

 } 

 else 

 { 

  printf("I/O Read Operation:\n"); 

  printf("  Status:    0x%lX\n", (long) status); 

  printf("  Requested: 0x%lX\n", (long) bytes); 

  printf("  Received:  0x%lX\n", (long) count[0]); 

 } 

 

 return(status); 

} 

 

 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

57 

General Standards Corporation, Phone: (256) 880-8787 
 

5.13. hpdi32_reg_mod() 

This function is the entry point to performing a read-modify-write on a register. The function should only be called 

after a successful open of the respective device via hpdi32_open(). Only the HPDI32 firmware registers (those 

defined inside hpdi32_api.h) may be modified. All PCI and PLX registers are read-only. 

Prototype 

U32 hpdi32_reg_mod(void* handle, U32 reg, U32 value, U32 mask); 

Argument Description 

handle This is an API device handle obtained via hpdi32_open(). 

reg This is the register to access. PCI and PLX registers are read-only. 

value This is the desired value to apply. Bits not referenced by the mask are ignored. 

mask This specifies the “value” bits to modify. If a bit is set here, then the corresponding 

“value” bit will be applied. The remaining “value” bits are ignored. 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_reg_bcr_mod( 

 void* handle, 

 U32  value, 

 U32  mask, 

 int  verbose) 

{ 

 U32 status; 

 

 status = hpdi32_reg_mod(handle, HPDI32_BCR, value, mask); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf("hpdi32_reg_mod() failure: %ld\n", (long) status); 

 } 

 else 

 { 

  printf("BCR Modify:\n"); 

  printf("  Value: 0x%lX\n", (long) value); 

  printf("  Mask:  0x%lX\n", (long) mask); 

 } 

 

 return(status); 

} 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

58 

General Standards Corporation, Phone: (256) 880-8787 
 

 

 

5.14. hpdi32_reg_read() 

This function is the entry point to reading the value from an HPDI32 register. The function should only be called 

after a successful open of the respective device via hpdi32_open(). All HPDI32 registers may be read. 

Prototype 

U32 hpdi32_reg_read(void* handle, U32 reg, U32* value); 

Argument Description 

handle This is an API device handle obtained via hpdi32_open(). 

reg This is the register to access. 

value The value read is recorded here. If this is NULL then no action is taken. 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_reg_bcr_read(void* handle, U32* value, int verbose) 

{ 

 U32 status; 

 

 status = hpdi32_reg_read(handle, HPDI32_BCR, value); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf("hpdi32_reg_read() failure: %ld\n", (long) status); 

 } 

 else 

 { 

  printf("BCR Read: 0x%lX\n", (long) value[0]); 

 } 

 

 return(status); 

} 

 

 

5.15. hpdi32_reg_write() 

This function is the entry point to writing to the register. The function should only be called after a successful open 

of the respective device via hpdi32_open(). Only the HPDI32 firmware registers (those defined inside 

hpdi32_api.h) may be modified. All PCI and PLX registers are read-only. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

59 

General Standards Corporation, Phone: (256) 880-8787 
 

Prototype 

U32 hpdi32_reg_write(void* handle, U32 reg, U32 value);  

Argument Description 

handle This is an API device handle obtained via hpdi32_open(). 

reg This is the register to access. 

value The value read from the register is recorded here. 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_reg_bcr_write(void* handle, U32 value, int verbose) 

{ 

 U32 status; 

 

 status = hpdi32_reg_write(handle, HPDI32_BCR, value); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf("hpdi32_reg_write() failure: %ld\n", (long) status); 

 } 

 else 

 { 

  printf("BCR Write: 0x%lX\n", (long) value); 

 } 

 

 return(status); 

} 

 

 

5.16. hpdi32_reset() 

This function is the entry point to perform a device hardware reset. The function should only be called after a 

successful open of the respective device via hpdi32_open(). In doing this, any I/O operations in progress are 

aborted. 

NOTE: The API performs a variety of actions during this call that are in addition to the hardware 

reset. This is necessary for proper API operation. If an application initiates a hardware reset by 

writing to the Board Control Register the results may be data loss or corruption.  

Prototype 

U32 hpdi32_reset(void* handle); 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

60 

General Standards Corporation, Phone: (256) 880-8787 
 

Argument Description 

handle This is an API device handle obtained via hpdi32_open(). 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_reset(void* handle, int verbose) 

{ 

 U32 status; 

 

 status = hpdi32_reset(handle); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf("hpdi32_reset() failure: %ld\n", (long) status); 

 } 

 else 

 { 

  printf("Device Reset: 0x%lX\n", (long) handle); 

 } 

 

 return(status); 

} 

 

 

5.17. hpdi32_status_text() 

This function is the entry point to retrieving a text based description of the status values supported by the SDK. 

Prototype 

U32 hpdi32_status_text(U32 status, char* text, size_t size); 

Argument Description 

status This is the status value whose description is desired. 

text The descriptive text is recorded here. 

size This gives the size of the above buffer. 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

61 

General Standards Corporation, Phone: (256) 880-8787 
 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_status_text(U32 stat, int verbose) 

{ 

 char buf[128]; 

 U32  status; 

 

 status = hpdi32_status_text(stat, buf, sizeof(buf)); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf( "hpdi32_status_text() failure: 0x%lX\n", 

    (long) status); 

 } 

 else 

 { 

  printf("Status: 0x%lX: %s\n", (long) stat, buf); 

 } 

 

 return(status); 

} 

 

 

5.18. hpdi32_version_get() 

This function is the entry point to retrieving version numbers. Without a valid device handle, only the API Library 

version number is accessible. Access to the Device Driver’s version number requires a valid device handle. The 

following table lists macros associated with this service. 

Macro (Services) Description 

HPDI32_VERSION_GET_DRIVER(h,b,s) This retrieves the driver version string. 

HPDI32_VERSION_GET_LIBRARY(h,b,s) This retrieves the API Library version string. 

Prototype 

U32 hpdi32_version_get( 

 void* handle, 

 U8  id, 

 char* version, 

 size_t size); 

Argument Description 

handle This is an API device handle obtained via hpdi32_open(). This is ignored except when 

accessing the Device Driver’s version data. 

id This indicates the version number desired. It should be either GSC_VERSION_LIBRARY 

or GSC_VERSION_DRIVER. 

version This is a buffer where the version string is recorded. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

62 

General Standards Corporation, Phone: (256) 880-8787 
 

size This is the size of the above buffer. 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 

 

U32 hpdi32_dsl_version_get(void* handle, U8 id, int verbose) 

{ 

 U32  status; 

 char ver[32]; 

 

 status = hpdi32_version_get(handle, id, ver, sizeof(ver)); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf( "hpdi32_version_get() failure: %ld\n", 

    (long) status); 

 } 

 else 

 { 

  printf("Version: %s\n", ver); 

 } 

 

 return(status); 

} 

 

 

5.19. hpdi32_write() 

This function is the entry point to writing transmit data to an HPDI32. The function should only be called after a 

successful open of the respective device via hpdi32_open(). The operation will be carried out according to the 

current set of transmit side I/O Parameters. If the Overlap Enable option is disabled, then the function will block and 

return either when the requested amount of data has been written or when the timeout period has lapsed, which ever 

occurs first. If the Overlap Enable option is enabled, the function will return immediately and the operation will be 

carried out in the background. In this case the application must either use I/O Completion Notification or query the 

transmit side I/O Status parameters to determine when the operation completes and how much data was read. The 

service writes up to the requested number of bytes, according to the transmit side I/O Data Size parameter (only full 

data values are written). Only a single write operation can be active at a time. If a request is made while a write 

operation is in progress, then the new request will fail. If overlapped I/O is requested and the function returns an 

error status, the overlapped operation may not have been initiated. No matter how an I/O operation ends though, 

even if it could not be started, an I/O completion event will be triggered if at all possible. 

NOTE: If the I/O Overlapped parameter is enabled (permitting background write processing), 

then the I/O buffer handed to hpdi32_write() must remain available until the operation 

completes. Failure to do so will likely result either in stack corruption or a general protection fault. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

63 

General Standards Corporation, Phone: (256) 880-8787 
 

NOTE: The Tx FIFO may run empty during a write request, resulting in a data transfer pause, 

when using DMA (either Demand Mode or Non-Demand Mode) with Application Buffers. Such 

overruns can arise because of the overhead required to prepare the memory for DMA use. To 

reduce this overhead, reduce the size of the I/O request. To eliminate this overhead, use API 

Buffers for I/O requests. The likelihood of such Rx Overruns can be reduced by using larger Rx 

FIFOs. The likelihood of such Rx Overruns can also be reduced by reducing the Rx clock rate. 

NOTE: For those boards without the Single Cycle Disable feature (see the Board Control 

Register) Demand Mode DMA based writes may produce a Tx FIFO Overrun. If this does occur, 

then the failure status GSC_INVALID_DATA will be returned, reflecting that the Tx FIFO image 

does not reflect the data written to it. On boards with 32-bit PCI interfaces this can occur only 

when the data size is 8-bit or 16-bit. On boards with 64-bit PCI interfaces this can occur with any 

data size setting. 

NOTE: Thoroughly examine the various I/O Parameters to determine the settings required for 

each application. 

NOTE: For DMA based I/O using Application Buffers, the buffer must be both readable and 

writable. This usually means that buffers cannot be declared as const or static const. I/O 

requests will fail if the buffer does not have read/write access. 

NOTE: Applications may make I/O requests of any size. However, the maximum amount of data 

that can be transfer in a single call is approximately 256MB. This upper limit is based on the 

macro GSC_IO_STATUS_COUNT_MASK. 

Prototype 

U32 hpdi32_write( 

 void*  handle, 

 const void* buffer, 

 U32   bytes, 

 U32*  count); 

Argument Description 

handle This is an API device handle obtained via hpdi32_open(). 

buffer This is the source for the data to send. It must remain accessible by the API until the 

operation completes. The pointer must not be NULL. The buffer can be an application 

allocated buffer or either of the API Buffers. 

bytes This is the desired number of bytes to write. The API will limit this to the value specified 

by the macro GSC_IO_STATUS_COUNT_MASK and will round it down to an integral 

multiple of the I/O Data Size parameter. 

count The API records the number of bytes actually transferred here. The value recorded may be 

less than the amount requested due to various factors; request limits, timeout, abort or other 

errors. 

 

Return Value Description 

GSC_SUCCESS The operation succeeded. 

GSC_WAIT_TIMEOUT The operation timed out before the requested amount of data was written. 

Otherwise … A GSC_XXX error status reflecting the problem encountered. 

Example 

#include "hpdi32_dsl.h" 

 

#include <stdio.h> 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

64 

General Standards Corporation, Phone: (256) 880-8787 
 

 

U32 hpdi32_dsl_write( 

 void*  handle, 

 const void* buffer, 

 U32   bytes, 

 U32*  count, 

 int   verbose) 

{ 

 U32 status; 

 

 status = hpdi32_write(handle, buffer, bytes, count); 

 

 if (!verbose) 

 { 

 } 

 else if (status != GSC_SUCCESS) 

 { 

  printf("hpdi32_write() failure: %ld\n", (long) status); 

 } 

 else 

 { 

  printf("I/O Write Operation:\n"); 

  printf("  Status:    0x%lX\n", (long) status); 

  printf("  Requested: 0x%lX\n", (long) bytes); 

  printf("  Sent:      0x%lX\n", (long) count[0]); 

 } 

 

 return(status); 

} 

 

 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

65 

General Standards Corporation, Phone: (256) 880-8787 
 

6. Configuration Parameters 

The HPDI32 and the API Library include a number of configurable features. These features are referred to by the 

API as Configuration Parameters. This section describes all of the HPDI32 Configuration Parameters. 

6.1. Parameter Macros 

The Configuration Parameters are grouped according to their functional categories. Within each category each 

parameter is described (in this section) along with the set of utility macros designed to facilitate configuration of and 

access to the respective parameters. Parameter macros fall into three groups, which are described in the following 

paragraphs. All macros are described in the following pages in association with their respective parameters. The 

parameter categories are as given in the below table. 

Parameter Categories Description 

HPDI32_CABLE_XXX These refer to the Cable Parameters. These pertain to configuration of the cable 

signals. 

HPDI32_FIFO_XXX These refer to the FIFO Parameters. 

HPDI32_IO_XXX These refer to the Input/Output Parameters. These pertain to data transfer between the 

host and the HPDI32. 

HPDI32_IRQ_XXX These refer to the Interrupt Parameters. 

HPDI32_MISC_XXX These refer to the Miscellaneous Parameters. 

HPDI32_RX_XXX These refer to the Receiver Parameters. 

HPDI32_TX_XXX These refer to the Transmitter Parameters. 

6.1.1. Parameter Definitions 

The first group of macros includes the parameter definitions. These are used to identify the specific parameter to be 

accessed. These macros begin with “HPDI32_” and are followed immediately by upper case letters identifying the 

parameter category. For example “HPDI32_MISC_” prefaces all Miscellaneous Parameter identifiers. These 

macros end with upper case letters indicating the name of the specific parameter. For example 

“HPDI32_MISC_STRICT_ARGUMENTS” identifies the Miscellaneous Strict Arguments parameter. 

6.1.2. Value Definitions 

The second group of macros identifies predefined values associated with the respective parameters. These macros 

begin with the Parameter Definition and are followed by a single underscore (“_”) then upper case letters that reflect 

the meaning of the respective values. For example the macro 

“HPDI32_MISC_STRICT_ARGUMENTS_DISABLE” is the value that represents the parameter’s disabled setting. 

6.1.3. Service Definitions 

The third group of macros performs operations on parameters. These are utility macros that retrieve parameter 

settings and states or assign parameter values. These macros include the Parameter Definition followed by a double 

underscore (“__”) then upper case letters that reflect the action to perform. For example 

“HPDI32_MISC_STRICT_ARGUMENTS__GET()” retrieves the current setting of the Miscellaneous Strict 

Arguments parameter. These macros include arguments, which are described as follows. 

6.1.3.1. Device Handle: h 

In the service macros, the argument h refers to the device handle used to access the respective device. This handle is 

obtained by calling hpdi32_open(). This argument must not be NULL. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

66 

General Standards Corporation, Phone: (256) 880-8787 
 

6.1.3.2. Which Bits: w 

In the service macros, the argument w refers to any combination of the HPDI32_WHICH_XXX bits. Refer to 

paragraph 3.6 on page 38. With some parameters this argument is unused or is specified inside the macro’s 

replacement text. In those cases the w is not included as a macro argument. 

6.1.3.3. Set Value: s 

In the service macros, the argument s refers to the value to be applied to the referenced parameter. With some 

parameters the value can be arbitrarily assigned by the application. With most parameters this argument should be 

one of the predefined value definitions. The s is not included as a macro argument for those cases where either a 

value is not being applied or the value applied is specified inside the macro replacement text. 

6.1.3.4. Get Value: g 

In the service macros, the argument g refers to the address of the variable to receive the parameter’s current setting. 

In cases where the current setting is not being read, this argument has been omitted from the service macro. In all 

cases, this argument can be NULL, in which case the current value is not retrieved. 

6.2. Cable Parameters 

The purpose of the Cable Parameters is to permit access to and control of the signals available at the HPDI32’s 

external interface connecter. All Cable Parameters are put in a default state when the device is opened and are 

returned to that state via the hpdi32_init() and hpdi32_reset() services. The configuration of the cable 

signals is controlled by HPDI32 firmware based registers. Applications are free to manipulate the configuration 

either via the API’s register access services or the Cable Parameter access services. When accessing the Cable 

Parameters any number or combination of appropriate HPDI32_WHICH_XXX identifiers may be used, even none. 

The following table summarizes the Cable Parameters. 

Parameter Macros Description 

HPDI32_CABLE_CLOCK_STATE This refers to the state of the cable’s clock signal. 

HPDI32_CABLE_COMMAND_MODE This refers to the operating mode for various cable control signals. 

HPDI32_CABLE_COMMAND_STATE This refers to the state of the various cable control signals. 

NOTE: When a Flow Control signal’s mode is set to GPIO, then it defaults to a GPIO input. If the 

mode is retrieved without also being set, then the mode is reported as GPIO, but might be 

configured as an output. 

6.2.1. Cable Parameter: Clock State 

The purpose of this read-only parameter is to report the state of the Cable Clock signal. The state is considered 

active if the signal is driven by the board itself or is expected to be driven by a remote device. The state is 

considered inactive otherwise. If the transmitter is enabled then the board drives the signal and its state is reported as 

active. If the receiver is enabled the state is reported as active since it should be driven by the remote device. The 

state is otherwise reported as inactive. The following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_CABLE_CLOCK_STATE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_CABLE_CLOCK_STATE_ACTIVE This value refers to the signal’s active state. 

HPDI32_CABLE_CLOCK_STATE_INACTIVE This value refers to the signal’s inactive state. 

 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

67 

General Standards Corporation, Phone: (256) 880-8787 
 

Macro (Services) Description 

HPDI32_CABLE_CLOCK_STATE__GET(h,g) This retrieves the signal’s current state. 

6.2.2. Cable Parameter: Command Mode 

The purpose of this parameter is to control and report the Cable Command Mode for those Cable Command signals 

which are configurable. In this respect, the signals operate either in a Flow Control mode to control data flow over 

the cable interface or as General Purpose I/O. The following tables describe the macros associated with this 

parameter. 

Macro (Parameter) Description 

HPDI32_CABLE_COMMAND_MODE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_CABLE_COMMAND_MODE_DEFAULT This refers to the signal’s default mode. This is 

Flow Control, which is the hardware’s default. 

HPDI32_CABLE_COMMAND_MODE_FLOW_CONTROL This refers to the data Flow Control mode. 

HPDI32_CABLE_COMMAND_MODE_GPIO_IN This refers to the GPIO Input mode. 

HPDI32_CABLE_COMMAND_MODE_GPIO_OUT_HI This refers to the GPIO Output High mode. 

HPDI32_CABLE_COMMAND_MODE_GPIO_OUT_LOW This refers to the GPIO Output Low mode. 

 

Macro (Services) Description 

HPDI32_CABLE_COMMAND_MODE__FC(h,w) This sets signals to Flow Control mode. 

HPDI32_CABLE_COMMAND_MODE__GET(h,w,g) This retrieves a signal’s current mode. 

HPDI32_CABLE_COMMAND_MODE__GPIO_HI(h,w) This sets signals to GPIO Output High mode. 

HPDI32_CABLE_COMMAND_MODE__GPIO_IN(h,w) This sets signals to GPIO Input mode. 

HPDI32_CABLE_COMMAND_MODE__GPIO_LOW(h,w) This sets signals to GPIO Output Low mode. 

HPDI32_CABLE_COMMAND_MODE__RESET(h,w) This resets the current mode to the default. 

HPDI32_CABLE_COMMAND_MODE__SET(h,w,s) This sets the current mode. 

HPDI32_CABLE_COMMAND_MODE__XXX_FC(h) This sets signal XXX to Flow Control mode. * 

HPDI32_CABLE_COMMAND_MODE__XXX_GET(h,g) This retrieves the current mode for signal XXX. * 

HPDI32_CABLE_COMMAND_MODE__XXX_IN(h) This sets signal XXX to GPIO Input mode. * 

HPDI32_CABLE_COMMAND_MODE__XXX_HI(h) This sets signal XXX to GPIO Output High mode. * 

HPDI32_CABLE_COMMAND_MODE__XXX_LOW(h) This sets signal XXX to GPIO Output Low mode. * 

HPDI32_CABLE_COMMAND_MODE__XXX_RESET(h) This resets the current mode for signal XXX to the 

default. * 

HPDI32_CABLE_COMMAND_MODE__XXX_SET(h,s) This sets the current mode for signal XXX. * 

* The XXX sequence refers to the following individual options: 0, 1, 2, 3, 4, 5 and 6 for Cable Command signals 

zero to six, GPIO_0, GPIO_1, GPIO_2, GPIO_3, GPIO_4, GPIO_5 and GPIO_6 for the Cable Command 

signals configured as GPIO lines zero to six, and for this Cable Command signals configured as Flow Control it 

includes FV for Frame Valid, LV for Line Valid, SV for Status Valid, RR for Receive Ready, TR for Transmit 

Ready, RE for Receive Enable, and TE for Transmit Enable. 

6.2.3. Cable Parameter: Command State 

The purpose of this read-only parameter is to report the state of the Cable Command signals. When the signal is in 

its Flow Control mode, the state is reported as active when the signal is driven, or is expected to be driven. The state 

is reported as inactive otherwise. When in the signal’s GPIO mode, the state is reported as active when the signal is 

read as high, and is reported as inactive when read as low. 

Macro (Parameter) Description 

HPDI32_CABLE_COMMAND_STATE This is the identifier for this parameter. 

 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

68 

General Standards Corporation, Phone: (256) 880-8787 
 

Macro (Values) Description 

HPDI32_CABLE_COMMAND_STATE_ACTIVE This refers to the signal’s active or high state. 

HPDI32_CABLE_COMMAND_STATE_INACTIVE This refers to the signal’s inactive or low state. 

 

Macro (Services) Description 

HPDI32_CABLE_COMMAND_STATE__GET(h,w,g) This retrieves a signal’s current state. 

HPDI32_CABLE_COMMAND_STATE__XXX_GET(h,g) This retrieves the current state for signal XXX. * 

* The XXX sequence refers to the following individual options: 0, 1, 2, 3, 4, 5 and 6 for Cable Command signals 

zero to six, GPIO_0, GPIO_1, GPIO_2, GPIO_3, GPIO_4, GPIO_5 and GPIO_6 for the Cable Command 

signals configured as GPIO lines zero to six, and for this Cable Command signals configured as Flow Control it 

includes FV for Frame Valid, LV for Line Valid, SV for Status Valid, RR for Receive Ready, TR for Transmit 

Ready, RE for Receive Enable, and TE for Transmit Enable. 

6.3. FIFO Parameters 

The purpose of the FIFO Parameters is to permit access to and control of the transmit and receive FIFOs. All FIFO 

Parameters are put in a default state when the device is opened and are returned to that state via the 

hpdi32_init() and hpdi32_reset() services. The configuration of the FIFOs is partly controlled by 

HPDI32 firmware based registers. Applications are free to manipulate the configuration either via the API’s register 

access services or the FIFO Parameter access services. When using the service hpdi32_config(), any number 

or combination of HPDI32_WHICH_TX or HPDI32_WHICH_RX may be used, even none. The transmit FIFO will 

only be accessed if the transmit bit is set and the receive FIFO will only be accessed if the receive bit is set. If 

neither is set, then no action will be taken. The following table lists the FIFO Parameters. 

Parameter Macros Description 

HPDI32_FIFO_ALMOST_LEVEL This refers to the FIFO Almost Full and Almost Empty status levels. 

HPDI32_FIFO_RESET This refers to resetting the FIFOs. 

HPDI32_FIFO_SIZE This refers to the size of the FIFOs. 

HPDI32_FIFO_STATUS This refers to the FIFO fill level status. 

HPDI32_FIFO_TRANSFER_SIZE This refers to the amount of guaranteed space/data available in the FIFOs. 

6.3.1. FIFO Parameter: Almost Level 

The purpose of this parameter is to control and report the FIFO Almost Full and Almost Empty status levels. When 

using the service hpdi32_config(), any number or combination of HPDI32_WHICH_AF or 

HPDI32_WHICH_AE may be used, even none (in addition to the transmit and receive bits described above). The 

Almost Full level will only be accessed if the Almost Full bit is set and the Almost Empty level will only be 

accessed if the Almost Empty bit is set. If neither is set, then no action will be taken. Which ever bits are set, they 

will be applied to transmit and receive FIFOs, respectively. The following tables describe the macros associated 

with this parameter. 

NOTE: The Almost Empty status becomes active when the FIFO contains ALMOST EMPTY or 

fewer samples. 

NOTE: The Almost Full status becomes active when the FIFO can receive ALMOST FULL or 

fewer additional samples before being full. 

NOTE: The API automatically resets the referenced FIFOs when either Almost Level is set. This 

insures that the setting takes affect immediately. A side affect however is that any data in the FIFO 

is lost. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

69 

General Standards Corporation, Phone: (256) 880-8787 
 

NOTE: Applications should not apply settings to any FIFO Almost Level while an I/O operation 

is in progress using the respective FIFO. Doing so will result in the loss of any data in the FIFO 

and will interfere with proper transfer of data through the board. 

NOTE: The API will automatically limit the FIFO Almost Level parameter values to the size of 

the respective FIFO, when the FIFO size is known. 

Macro (Parameter) Description 

HPDI32_FIFO_ALMOST_LEVEL This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_FIFO_ALMOST_EMPTY_DEFAULT This is the default Almost Empty level, which may differ from 

the hardware’s default. 

HPDI32_FIFO_ALMOST_FULL_DEFAULT This is the default Almost Full level, which may differ from 

the hardware’s default. 

HPDI32_FIFO_ALMOST_LEVEL_MAX This is the maximum level permissible. 

 

Macro (Services) Description 

HPDI32_FIFO_ALMOST_LEVEL__GET(h,w,g) This retrieves a parameter’s current setting. 

HPDI32_FIFO_ALMOST_LEVEL__SET(h,w,s) This sets a parameter’s level. 

HPDI32_FIFO_ALMOST_LEVEL__XXX_GET(h,g) This retrieves the respective FIFO Almost setting. * 

HPDI32_FIFO_ALMOST_LEVEL__XXX_SET(h,s) This sets the respective FIFO Almost setting. * 

* The XXX sequence refers to the following individual options: RX_AE for the Rx FIFO Almost Empty level, 

RX_AF for the Rx FIFO Almost Full level, TX_AE for the Tx FIFO Almost Empty level and TX_AF for the Tx 

FIFO Almost Full level. 

6.3.2. FIFO Parameter: Reset 

The purpose of this parameter is to control the resetting of the respective FIFOs. The following tables describe the 

macros associated with this parameter. 

NOTE: Applications should not reset a FIFO while in use by an I/O operation. Doing so will 

result in the loss of any data in the FIFO and will interfere with proper transfer of data through the 

board.  

Macro (Parameter) Description 

HPDI32_FIFO_RESET This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_FIFO_RESET_DEFAULT This is the default action, which to do nothing. 

HPDI32_FIFO_RESET_NO This means the FIFO is not to be reset or that it was not reset. 

HPDI32_FIFO_RESET_YES This means the FIFO is to be reset or that it was reset. 

 

Macro (Services) Description 

HPDI32_FIFO_RESET__RESET(h,w) This resets the respective FIFOs. 

HPDI32_FIFO_RESET__SET(h,w,s) This applies a FIFO reset option. 

HPDI32_FIFO_RESET__XXX_RESET(h,s) This resets the respective FIFO. * 

HPDI32_FIFO_RESET__XXX_SET(h,s) This applies a setting to the respective FIFO. * 

HPDI32_FIFO_RESET__XXX_YES(h) This resets the respective FIFO. * 

HPDI32_FIFO_RESET__YES(h,w) This resets the specified FIFO(s). 

* The XXX sequence refers to the following individual options: RX for the Rx FIFO and TX for the Tx FIFO. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

70 

General Standards Corporation, Phone: (256) 880-8787 
 

6.3.3. FIFO Parameter: Size 

The purpose of this read-only parameter is to report the size of the respective FIFOs. The following tables describe 

the macros associated with this parameter. If the HPDI32 does not support the FIFO Size Registers then the size is 

reported as zero (0). 

Macro (Parameter) Description 

HPDI32_FIFO_SIZE This is the identifier for this parameter. 

 

Macro (Services) Description 

HPDI32_FIFO_SIZE__GET(h,w,g) This retrieves a FIFO size. 

HPDI32_FIFO_SIZE__XXX_GET(h,g) This retrieves the size of the respective FIFO. * 

* The XXX sequence refers to the following individual options: RX for the Rx FIFO and TX for the Tx FIFO. 

6.3.4. FIFO Parameter: Status 

The purpose of this read-only parameter is to report the fill level status of the respective FIFOs. The following tables 

describe the macros associated with this parameter. If the FIFO Almost Levels are set to illogical values 

(overlapping or larger that the FIFO size) then the status returned may be incorrect. 

Macro (Parameter) Description 

HPDI32_FIFO_STATUS This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_FIFO_STATUS_ALMOST_EMPTY The FIFO contains Almost Empty or fewer data values. 

HPDI32_FIFO_STATUS_ALMOST_FULL The FIFO contains Almost Full or fewer data spaces. 

HPDI32_FIFO_STATUS_EMPTY The FIFO is empty. 

HPDI32_FIFO_STATUS_FULL The FIFO is full. 

HPDI32_FIFO_STATUS_MEDIAN The FIFO is between Almost Empty and Almost Full. 

 

Macro (Services) Description 

HPDI32_FIFO_STATUS__GET(h,w,g) This retrieves a FIFO fill status. 

HPDI32_FIFO_STATUS__XXX_GET(h,g) This retrieves the fill status of the respective FIFO. * 

* The XXX sequence refers to the following individual options: RX for the Rx FIFO and TX for the Tx FIFO. 

6.3.5. FIFO Parameter: Transfer Size 

The purpose of this read-only parameter is to report the number of samples the API guarantees can be transferred to 

or from the respective FIFO by an I/O request (i.e. a read or write request). The number returned is not an exact 

number and may be much less than the exact number. Essentially, it is simply the number the API is able to discern 

by examining the board’s features and state and is the number the API guarantees can be transferred to or from the 

respective FIFO at that moment. The following tables describe the macros associated with this parameter. If the 

FIFO Almost Levels are set to illogical values (overlapping or larger that the FIFO size) then the number returned 

may be invalid. 

Macro (Parameter) Description 

HPDI32_FIFO_TRANSFER_SIZE This is the identifier for this parameter. 

 

Macro (Services) Description 

HPDI32_FIFO_TRANSFER_SIZE__GET(h,w,g) This retrieves a FIFO Transfer Size value. 

HPDI32_FIFO_TRANSFER_SIZE__XXX_GET(h,g) This retrieves the Transfer Size value for the 

respective FIFO. * 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

71 

General Standards Corporation, Phone: (256) 880-8787 
 

* The XXX sequence refers to the following individual options: RX for the Rx FIFO and TX for the Tx FIFO. 

6.4. I/O Parameters 

The purpose of the I/O Parameters is to permit access to and control of transmit and receive I/O operations. All I/O 

Parameters are put in a default state when the device is opened and are returned to that state via the 

hpdi32_init() service. The configuration of the I/O Parameters is retained entirely within the API and cannot 

be altered by any HPDI32 registers. When using the service hpdi32_config(), any number or combination of 

HPDI32_WHICH_TX or HPDI32_WHICH_RX may be used, even none. The transmit I/O Parameters will be 

accessed only if the transmit bit is set and the receive I/O Parameters will be accessed only if the receive bit is set. If 

neither is set, then no action will be taken. 

The API can perform I/O transfer operations using either of two types of buffers. First, it can use Application 

Buffers which are allocated and maintained entirely by the application. These are obtained by malloc() type 

services and, through the processor’s memory manager, appear to the application to be contiguous memory. These 

buffers are, in-fact, scattered throughout physical memory and at times are paged out to the hard disk. The second 

buffer type, API Buffers, is memory that is physically contiguous and that is also locked in place in memory until 

released via the API. Application Buffers have the advantage that they can be significantly larger than API Buffers. 

API Buffers have the advantage that they require less overhead during I/O operations, potentially producing higher 

throughput rates. For I/O requests, applications can choose at will what type of buffers to use and, if using API 

Buffers, which API Buffer to use (Tx or Rx). There is a slight performance penalty however, when switching 

between Application Buffers and API Buffers, and vise-versa. If an application can acquire API Buffers of suitable 

size, then the best results will generally be achieved by using those exclusively. Additionally, if an application is 

interested primarily in transmitting data or in receiving data, then the best performance can generally be gained by 

using the two API Buffers in a ping-pong sequence; one buffer being used for I/O while the other is being processed, 

then switching over as soon as processing is done. 

The API supports blocking and overlapped I/O requests. The default is blocking I/O where the call returns at the 

conclusion of the operation. Overlapped I/O is selected merely by enabling the I/O Overlap Enable parameter. When 

this is done I/O requests return immediately, while the operation is carried out in the background. For both methods, 

there are two ways of determining when and how an operation concludes. The first method is by polling. By using 

the I/O Status parameter an application can query for the status of an I/O operation. This indicates if the operation is 

still in progress, if it has ended, and how (timeout, abort, error) and how much data was transferred. This can be 

done by any thread both for overlapped I/O and blocking I/O (i.e. one thread can check if another is still blocked on 

an I/O operation). The second method is by event notification, which is available both as a callback and as a wait 

service. Using the callback service an application can provide a function pointer and an arbitrary argument that is 

invoked when the I/O completes (Tx and Rx are independently configurable). The callback occurs in a separate 

thread context and must return before any follow-on callbacks can be made. (The callback receives the device 

handle, an application’s arbitrary value, and the I/O status as arguments.) Using the wait service, any number of 

threads can block until an I/O operation ends. Each thread can independently wait on Tx and/or Rx. When a wait 

request is made the thread will block until the first of the referenced operations ends. This occurs whether the I/O 

operation began before the request was made of began afterwards. Once resumed the I/O Status parameter must be 

queried to determine the I/O completion status. 

The following table lists the I/O Parameters. 

Parameter Macros Description 

HPDI32_IO_ABORT This refers to aborting an I/O request. 

HPDI32_IO_ABORTED This refers to the abort status of an I/O request. 

HPDI32_IO_BUFFER_POINTER This refers to the pointer to an API Buffer. 

HPDI32_IO_BUFFER_SIZE This refers the size of an API Buffer. 

HPDI32_IO_CALLBACK_ARG This refers to an arbitrary, application supplied callback argument 

value. 

HPDI32_IO_CALLBACK_FUNC This refers to an application supplied I/O completion callback function. 

HPDI32_IO_DATA_SIZE This refers to width of the cable data: 8, 16 or 32-bits. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

72 

General Standards Corporation, Phone: (256) 880-8787 
 

HPDI32_IO_DMA_CHANNEL_SEL This refers to when DMA channels are acquired and released. 

HPDI32_IO_DMA_CONTROL_MODE This refers to how non-Demand Mode DMA is handled by the API. 

HPDI32_IO_DMA_PRIORITY This refers to DMA priority for simultaneous reads and writes. 

HPDI32_IO_MODE This refers to the data transfer mode: PIO, DMA, DMDMA. 

HPDI32_IO_OVERLAP_ENABLE This refers to how I/O requests are processed: foreground, background. 

HPDI32_IO_PIO_THRESHOLD This refers to the threshold at which I/O requests are automatically 

performed using PIO mode data transfers. 

HPDI32_IO_SINGLE_CYCLE This refers to a device’s feature support at critical FIFO fill levels. 

HPDI32_IO_STATUS This refers to the current status of an I/O request. 

HPDI32_IO_TIMEOUT This refers to the overall time limit allowed for I/O requests. 

6.4.1. I/O Parameter: Abort 

The purpose of this parameter is to abort an ongoing I/O operation. This parameter is applicable to active I/O 

requests only. No action occurs if none are active at the time an abort request is made. There is also no affect on 

future I/O requests. In the hpdi32_config() service the Transmit and Receive selections are made using 

individual HPDI32_WHICH_XX bits. (Here “XX” is “TX”, “RX” or any of the predefined combinations.) The 

following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_IO_ABORT This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IO_ABORT_DEFAULT This is the default action to take, which is to do nothing. 

HPDI32_IO_ABORT_NO As a “set” option this means do not perform an abort. As a “get” option it 

means that an abort did not occur. 

HPDI32_IO_ABORT_YES As a “set” option this requests an abort. This value is never returned as a 

“get” option as the parameter auto clears after an abort request. 

 

Macro (Services) Description 

HPDI32_IO_ABORT__SET(h,w,s) This applies an option to an I/O operation. 

HPDI32_IO_ABORT__XXX_SET(h,s) This applies an option to an I/O operation. * 

HPDI32_IO_ABORT__XXX_YES(h) This aborts an I/O operation. * 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 

6.4.2. I/O Parameter: Aborted 

The purpose of this read-only parameter is to determine if an I/O abort has occurred. This is applied against the I/O 

status that exists at the time, and will reference the status from the last operation concluded, if applicable, or an 

ongoing operation, if one is active. Only the most recent or current status is available. The status of previous 

operations is not available. The following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_IO_ABORTED This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IO_ABORTED_NO This means that an I/O operation was not aborted. 

HPDI32_IO_ABORTED_YES This means that an I/O operation was aborted. 

 

Macro (Services) Description 

HPDI32_IO_ABORTED__GET(h,w,g) This retrieves the status of an operation. 

HPDI32_IO_ABORTED__XXX_GET(h,g) This retrieves the status of an I/O operation. * 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

73 

General Standards Corporation, Phone: (256) 880-8787 
 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 

6.4.3. I/O Parameter: Buffer Pointer 

The purpose of this read-only parameter is to retrieve the pointer to a respective API Buffer. If the application has 

not configured the size of the respective buffer, then the pointer returned will be NULL. The following tables 

describe the macros associated with this parameter. 

NOTE: Applications must obtain a fresh pointer each time a change is made to the API Buffer 

size. Use of a stale pointer may generate a memory protection fault. Refer to the I/O Buffer Size 

parameter in the next section. 

NOTE: For DMA based I/O using Application Buffers, the buffer must be both readable and 

writable. This usually means that buffers cannot be declared as const or static const. I/O 

requests will fail if the buffer does not have read/write access. 

Macro (Parameter) Description 

HPDI32_IO_BUFFER_POINTER This is the identifier for this parameter. 

 

Macro (Services) Description 

HPDI32_IO_BUFFER_POINTER__GET(h,w,g) This retrieves an API Buffer pointer. 

HPDI32_IO_BUFFER_POINTER__XXX_GET(h,g) This retrieves an API Buffer pointer. * 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 

6.4.4. I/O Parameter: Buffer Size 

The purpose of this parameter is to adjust and retrieve the size of the respective API Buffer. The following tables 

describe the macros associated with this parameter. 

NOTE: The Buffer Size cannot be changed while the buffer is in use by an I/O operation. 

NOTE: The API has no control over the amount of memory the OS will grant in response to an 

API Buffer allocation request. Each of the API Buffers is a contiguous block of memory requested 

of the OS by the Device Driver. The OS manages these types of resources differently than 

application memory resources so the size of the API Buffer obtained may be significantly less then 

requested by the application. Applications must therefore examine this parameter after it is 

adjusted to guard against memory protection faults. 

NOTE: A request to increase the API Buffer Size may take several seconds to complete. This is 

due entirely to OS and is not controllable by the API or the driver. 

NOTE: Each time the application requests an API Buffer size change, the pointer used to access 

the buffer is likely to also change. Applications must therefore obtain a fresh pointer following a 

size change request. Refer to the I/O Buffer Pointer parameter description in the previous section. 

Macro (Parameter) Description 

HPDI32_IO_BUFFER_SIZE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IO_BUFFER_SIZE_DEFAULT This is the default size, which is zero. 

 

Macro (Services) Description 

HPDI32_IO_BUFFER_SIZE__GET(h,w,g) This retrieves a current size setting. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

74 

General Standards Corporation, Phone: (256) 880-8787 
 

HPDI32_IO_BUFFER_SIZE__SET(h,w,s,g) This requests a size change and retrieves the results. 

HPDI32_IO_BUFFER_SIZE__XXX_FREE(h) This requests that a buffer be freed. 

HPDI32_IO_BUFFER_SIZE__XXX_GET(h,g) This retrieves a buffer’s current size. 

HPDI32_IO_BUFFER_SIZE__XXX_SET(h,s,g) This requests a size change and retrieves the results. 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 

6.4.5. I/O Parameter: Callback Argument 

The purpose of this parameter is to modify and report the application provided argument that it receives as “arg2” 

for an I/O completion callback event. The following tables describe the macros associated with this parameter. 

NOTE: Applications must remember that the macros GSC_NO_CHANGE and GSC_DEFAULT 

have special meaning when applying parameter modifications. If the application specific value 

being supplied for this parameter happens to equal either of these values, then the results will be 

according to the API’s use of these special values rather than the applications intent. 

NOTE: This parameter can be accessed and altered during the callback, but the callback must 

return before subsequent callbacks can be made on the same I/O transfer direction. 

Macro (Parameter) Description 

HPDI32_IO_CALLBACK_ARG This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IO_CALLBACK_ARG_DEFAULT This is the default, which is zero. 

 

Macro (Services) Description 

HPDI32_IO_CALLBACK_ARG__GET(h,w,g) This retrieves a current setting. 

HPDI32_IO_CALLBACK_ARG__RESET(h,w) This resets a setting. 

HPDI32_IO_CALLBACK_ARG__SET(h,w,s) This requests a setting change. 

HPDI32_IO_CALLBACK_ARG__XXX_GET(h,g) This retrieves a current setting. * 

HPDI32_IO_CALLBACK_ARG__XXX_RESET(h) This resets a setting. * 

HPDI32_IO_CALLBACK_ARG__XXX_SET(h,s) This requests a setting change. * 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 

6.4.6. I/O Parameter: Callback Function 

The purpose of this parameter is to modify and report the application provided function pointer for I/O completion 

events. The following tables describe the macros associated with this parameter. 

NOTE: This parameter can be accessed and altered during the callback, but the callback must 

return before subsequent callbacks can be made on the same I/O transfer direction. 

Macro (Parameter) Description 

HPDI32_IO_CALLBACK_FUNC This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IO_CALLBACK_FUNC_DEFAULT This is the default, which is NULL. 

 

Macro (Services) Description 

HPDI32_IO_CALLBACK_FUNC__GET(h,w,g) This retrieves a current function pointer. 

HPDI32_IO_CALLBACK_FUNC__RESET(h,w) This resets a function pointer. 

HPDI32_IO_CALLBACK_FUNC__SET(h,w,s) This requests a function pointer change. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

75 

General Standards Corporation, Phone: (256) 880-8787 
 

HPDI32_IO_CALLBACK_FUNC__XXX_GET(h,g) This retrieves a current function pointer. * 

HPDI32_IO_CALLBACK_FUNC__XXX_RESET(h) This resets a function pointer. * 

HPDI32_IO_CALLBACK_FUNC__XXX_SET(h,s) This requests a function pointer change. * 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 

6.4.7. I/O Parameter: Data Size 

The purpose of this parameter is to modify and report the base Data Size for data transfers on the external cable 

interface. This parameter specifies the size of each sample transferred across the cable in bytes. The following tables 

describe the macros associated with this parameter. 

NOTE: Whatever Data Size is used, it is always aligned against the lowest cable data byte. 

Macro (Parameter) Description 

HPDI32_IO_DATA_SIZE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IO_DATA_SIZE_8_BITS This sets the data size to 8-bits. 

HPDI32_IO_DATA_SIZE_16_BITS This sets the data size to 16-bits. 

HPDI32_IO_DATA_SIZE_32_BITS This sets the data size to 32-bits. 

HPDI32_IO_DATA_SIZE_DEFAULT This is the default, which is 32-bits. 

 

Macro (Services) Description 

HPDI32_IO_DATA_SIZE__GET(h,w,g) This retrieves a current setting. 

HPDI32_IO_DATA_SIZE__RESET(h,w) This resets a setting. 

HPDI32_IO_DATA_SIZE__SET(h,w,s) This requests a setting change. 

HPDI32_IO_DATA_SIZE__XXX_8(h) This requests a setting of 8-bits. * 

HPDI32_IO_DATA_SIZE__XXX_16(h) This requests a setting of 16-bits. * 

HPDI32_IO_DATA_SIZE__XXX_32(h) This requests a setting of 32-bits. * 

HPDI32_IO_DATA_SIZE__XXX_GET(h,g) This retrieves a current setting. * 

HPDI32_IO_DATA_SIZE__XXX_RESET(h) This resets a setting. * 

HPDI32_IO_DATA_SIZE__XXX_SET(h,s) This requests a setting change. * 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 

6.4.8. I/O Parameter: DMA Channel Select 

The purpose of this parameter is to modify and report the API’s processing of DMA channel selection when I/O 

requests are made and completed. This parameter is applicable only when applications opt to DMA for I/O requests. 

The following tables describe the macros associated with this parameter. 

NOTE: The PCI interface chip used on all HPDI32s includes two DMA channels/controllers. If 

the HPDI32 supports the Feature Set Register and the DMA Channel 1 bit is set (the 

HPDI32_FSR_DMA_CH1 bit) then the HPDI32 supports DMA on both channels. Otherwise the 

firmware supports DMA on only the first DMA channel, meaning that the board cannot support 

simultaneous DMA reads and writes. 

Macro (Parameter) Description 

HPDI32_IO_DMA_CHANNEL_SEL This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IO_DMA_CHANNEL_SEL_DYNAMIC This selects the dynamic option. With this setting the 

API acquires a DMA channel (a hardware resource) 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

76 

General Standards Corporation, Phone: (256) 880-8787 
 

when needed and releases it when not needed, which is 

as soon as the I/O request completes. This is applicable 

when the HPDI32 firmware supports DMA on only a 

single channel and the application transfers data in both 

directions. 

HPDI32_IO_DMA_CHANNEL_SEL_RX_DEFAULT This is the Rx default, which is dynamic. 

HPDI32_IO_DMA_CHANNEL_SEL_STATIC This selects the static option. With this setting the API 

acquires a DMA channel (a hardware resource) when 

needed and keeps it until told to release it (implicitly). 

This is applicable when the HPDI32 firmware supports 

DMA on both DMA channels or when the application 

transfers data in just a single direction. This option is 

more efficient. 

HPDI32_IO_DMA_CHANNEL_SEL_TX_DEFAULT This is the Tx default, which is static. 

 

Macro (Services) Description 

HPDI32_IO_DMA_CHANNEL_SEL__GET(h,w,g) This retrieves a current setting. 

HPDI32_IO_DMA_CHANNEL_SEL__SET(h,w,s) This requests a setting change. 

HPDI32_IO_DMA_CHANNEL_SEL__XXX_DYNAMIC(h) This requests a setting of dynamic. * 

HPDI32_IO_DMA_CHANNEL_SEL__XXX_GET(h,g) This retrieves a current setting. * 

HPDI32_IO_DMA_CHANNEL_SEL__XXX_RESET(h) This resets a setting. * 

HPDI32_IO_DMA_CHANNEL_SEL__XXX_SET(h,s) This requests a setting change. * 

HPDI32_IO_DMA_CHANNEL_SEL__XXX_STATIC(h) This requests a setting of static. * 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 

6.4.9. I/O Parameter: DMA Control Mode 

The purpose of this parameter is to modify and report the API’s handling of I/O requests using Non-Demand Mode 

DMA. The following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_IO_DMA_CONTROL_MODE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IO_DMA_CONTROL_MODE_AUTOMATIC This selects the automatic option. With this setting the 

API maintains data integrity automatically on behalf of 

the application. Reads will not return indeterminate data 

and writes will not loose data. This is done at the 

expense of performance. 

HPDI32_IO_DMA_CONTROL_MODE_DEFAULT This is the default, which is automatic. 

HPDI32_IO_DMA_CONTROL_MODE_MANUAL This selects the manual option. With this setting, 

applications are responsible for insuring data integrity by 

verifying manually before a transfer that the FIFO can 

accommodate the request. If not, reads may return 

indeterminate data and writes may loose data. This is 

because Non-Demand Mode DMA is a blind data 

transfer mode. 

 

Macro (Services) Description 

HPDI32_IO_DMA_CONTROL_MODE__GET(h,w,g) This retrieves a current setting. 

HPDI32_IO_DMA_CONTROL_MODE__RESET(h,w) This resets a setting. 

HPDI32_IO_DMA_CONTROL_MODE__SET(h,w,s) This requests a setting change. 

HPDI32_IO_DMA_CONTROL_MODE__XXX_AUTO(h) This requests a setting of automatic. * 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

77 

General Standards Corporation, Phone: (256) 880-8787 
 

HPDI32_IO_DMA_CONTROL_MODE__XXX_GET(h,g) This retrieves a current setting. * 

HPDI32_IO_DMA_CONTROL_MODE__XXX_MANUAL(h) This requests a setting of manual. * 

HPDI32_IO_DMA_CONTROL_MODE__XXX_RESET(h) This resets a setting. * 

HPDI32_IO_DMA_CONTROL_MODE__XXX_SET(h,s) This requests a setting change. * 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 

6.4.10. I/O Parameter: DMA Priority 

The purpose of this parameter is to modify and report the DMA data transfer priority assigned during I/O requests. 

This parameter is applicable only when applications opt to use DMA for simultaneous I/O reads and writes. The 

following tables describe the macros associated with this parameter. 

NOTE: If I/O is active in both directions (read and write) at the same time, and both have the 

same priority, then this results in rotating priority. This occurs whether the priority for both is 

either enabled or disabled. 

Macro (Parameter) Description 

HPDI32_IO_DMA_PRIORITY This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IO_DMA_PRIORITY_DISABLE This selects the disable option, which permits the other I/O to 

have priority. 

HPDI32_IO_DMA_PRIORITY_ENABLE This selects the enable option, which requests that this I/O be 

have priority. 

HPDI32_IO_DMA_PRIORITY_RX_DEFAULT This is the Rx default, which is disable. 

HPDI32_IO_DMA_PRIORITY_TX_DEFAULT This is the Tx default, which is enable. 

 

Macro (Services) Description 

HPDI32_IO_DMA_PRIORITY__GET(h,w,g) This retrieves a current setting. 

HPDI32_IO_DMA_PRIORITY__SET(h,w,s) This requests a setting change. 

HPDI32_IO_DMA_PRIORITY__XXX_DISABLE(h) This requests a setting of disable. * 

HPDI32_IO_DMA_PRIORITY__XXX_ENABLE(h) This requests a setting of enable. * 

HPDI32_IO_DMA_PRIORITY__XXX_GET(h,g) This retrieves a current setting. * 

HPDI32_IO_DMA_PRIORITY__XXX_RESET(h) This resets a setting. * 

HPDI32_IO_DMA_PRIORITY__XXX_SET(h,s) This requests a setting change. * 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 

6.4.11. I/O Parameter: Mode 

The purpose of this parameter is to modify and report the data transfer mode used by the API during I/O requests. 

The following tables describe the macros associated with this parameter. 

NOTE: For DMA based I/O using Application Buffers, the buffer must be both readable and 

writable. In some cases this means that buffers cannot be declared as const or static const. 

I/O requests will fail if the buffer does not have read/write access. 

Macro (Parameter) Description 

HPDI32_IO_MODE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IO_MODE_DEFAULT This selects the default, which is Demand Mode DMA. 

HPDI32_IO_MODE_DMA This selects the non-Demand Mode DMA, which is a blind transfer option. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

78 

General Standards Corporation, Phone: (256) 880-8787 
 

This option is further configurable as automatic or manual via the Non-

Demand Mode DMA parameter. 

HPDI32_IO_MODE_DMDMA This selects Demand Mode DMA, which is the most efficient mode. 

HPDI32_IO_MODE_PIO This selects Programmed I/O, which used repetitive register reads and writes. 

 

Macro (Services) Description 

HPDI32_IO_MODE__GET(h,w,g) This retrieves a current setting. 

HPDI32_IO_MODE__RESET(h,w) This resets a setting. 

HPDI32_IO_MODE__SET(h,w,s) This requests a setting change. 

HPDI32_IO_MODE__XXX_DMA(h) This requests a setting of DMA. * 

HPDI32_IO_MODE__XXX_DMDMA(h) This requests a setting of DMDMA. * 

HPDI32_IO_MODE__XXX_GET(h,g) This retrieves a current setting. * 

HPDI32_IO_MODE__XXX_PIO(h) This requests a setting of PIO. * 

HPDI32_IO_MODE__XXX_RESET(h) This resets a setting. * 

HPDI32_IO_MODE__XXX_SET(h,s) This requests a setting change. * 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 

6.4.12. I/O Parameter: Overlap Enable 

The purpose of this parameter is to modify and report on the API’s foreground or background processing of I/O 

requests. When I/O requests are made the API will use this parameter’s setting to control how the request is 

processed. If the option is enabled then processing occurs as overlapped I/O. Otherwise it is performed as blocking 

I/O. The following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_IO_OVERLAP_ENABLE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IO_OVERLAP_ENABLE_DEFAULT This selects the default, which is no. 

HPDI32_IO_OVERLAP_ENABLE_NO This selects the no option. I/O requests block until the request 

completes or times out. 

HPDI32_IO_OVERLAP_ENABLE_YES This selects the yes option. I/O requests return immediately 

while the data transfer occurs in the background. 

 

Macro (Services) Description 

HPDI32_IO_OVERLAP_ENABLE__GET(h,w,g) This retrieves a current setting. 

HPDI32_IO_OVERLAP_ENABLE__RESET(h,w) This resets a setting. 

HPDI32_IO_OVERLAP_ENABLE__SET(h,w,s) This requests a setting change. 

HPDI32_IO_OVERLAP_ENABLE__XXX_GET(h,g) This retrieves a current setting. * 

HPDI32_IO_OVERLAP_ENABLE__XXX_NO(h) This requests a setting of no. * 

HPDI32_IO_OVERLAP_ENABLE__XXX_RESET(h) This resets a setting. * 

HPDI32_IO_OVERLAP_ENABLE__XXX_SET(h,s) This requests a setting change. * 

HPDI32_IO_OVERLAP_ENABLE__XXX_YES(h) This requests a setting of yes. * 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 

6.4.13. I/O Parameter: PIO Threshold 

The purpose of this parameter is to modify and report the threshold for I/O requests where the API automatically 

reverts to PIO mode verses the configured mode. When I/O requests are made the API will compare the requested 

number of samples to this parameter’s value. If the request is at or below this level, then PIO is used rather than the 

configured mode. This is because PIO is more efficient with smaller sized I/O requests. The following tables 

describe the macros associated with this parameter. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

79 

General Standards Corporation, Phone: (256) 880-8787 
 

Macro (Parameter) Description 

HPDI32_IO_PIO_THRESHOLD This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IO_PIO_THRESHOLD_DEFAULT This selects the default, which is 16 samples. 

HPDI32_IO_PIO_THRESHOLD_NONE This sets the threshold to zero, which disables the feature. 

 

Macro (Services) Description 

HPDI32_IO_PIO_THRESHOLD__GET(h,w,g) This retrieves a current setting. 

HPDI32_IO_PIO_THRESHOLD__RESET(h,w) This resets a setting. 

HPDI32_IO_PIO_THRESHOLD__SET(h,w,s) This requests a setting change. 

HPDI32_IO_PIO_THRESHOLD__XXX_GET(h,g) This retrieves a current T setting. * 

HPDI32_IO_PIO_THRESHOLD__XXX_NONE(h,s) This requests a setting change to zero. * 

HPDI32_IO_PIO_THRESHOLD__XXX_RESET(h) This resets a setting. * 

HPDI32_IO_PIO_THRESHOLD__XXX_SET(h,s) This requests a setting change. * 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 

6.4.14. I/O Parameter: Single Cycle 

The purpose of this parameter is to modify and report a setting that tells the API how the HPDI32 responds during 

Demand Mode DMA transfers when the Tx FIFO becomes Almost Full or the Rx FIFO becomes Almost Empty. In 

essence, this parameter tells the API whether the HPDI32 slows or pauses data transfer between the respective FIFO 

and the DMA engine at the given fill level. When data transfer slows it is because the board reverts to using single 

cycle accesses to transfer data, meaning the Single Cycle firmware feature is Present. When data transfer pauses it is 

because the board momentarily halts data transfer, meaning the Single Cycle firmware feature is Absent. This is 

generally applicable only to HPDI32 boards with either older or custom firmware. On newer boards which include 

the Single Cycle Disable feature, the API ignores this parameter. This parameter is applicable only for Demand 

Mode DMA transfers whose data size, in bits, is less than the board’s PCI bus size, in bits, and then only on those 

boards which do not include the Single Cycle Disable feature. This parameter can be ignored under all other 

circumstances. The following tables describe the macros associated with this parameter. 

NOTE: There are no known cases where an HPDI32 has different Tx and Rx characteristics. 

Applications must therefore insure that the Tx and Rx parameters are set the same. 

Macro (Parameter) Description 

HPDI32_IO_SINGLE_CYCLE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IO_SINGLE_CYCLE_ABSENT Data transfer pauses as the Single Cycle feature is absent. 

HPDI32_IO_SINGLE_CYCLE_DEFAULT This selects the default, which is the Present option. 

HPDI32_IO_SINGLE_CYCLE_PRESENT Data transfer slows as the Single Cycle feature is present. 

 

Macro (Services) Description 

HPDI32_IO_SINGLE_CYCLE__ABSENT(h,w) This requests a setting change to Absent. 

HPDI32_IO_SINGLE_CYCLE__GET(h,w,g) This retrieves a current setting. 

HPDI32_IO_SINGLE_CYCLE__PRESENT(h,w) This requests a setting change to Present. 

HPDI32_IO_SINGLE_CYCLE__RESET(h,w) This resets a setting. 

HPDI32_IO_SINGLE_CYCLE__SET(h,w,s) This requests a setting change. 

HPDI32_IO_SINGLE_CYCLE__XXX_ABSENT(h) This requests a setting change to Absent. * 

HPDI32_IO_SINGLE_CYCLE__XXX_GET(h,g) This retrieves a current setting. * 

HPDI32_IO_SINGLE_CYCLE__XXX_PRESENT(h) This requests a setting change to Present. * 

HPDI32_IO_SINGLE_CYCLE__XXX_RESET(h) This resets a setting. * 

HPDI32_IO_SINGLE_CYCLE__XXX_SET(h,s) This requests a setting change. * 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

80 

General Standards Corporation, Phone: (256) 880-8787 
 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 

6.4.15. I/O Parameter: Status 

The purpose of this parameter is to report the current I/O status. The status returned includes the set of 

GSC_IO_STATUS_XXX fields and bits for the referenced I/O request, which may have completed or may still be 

active. The following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_IO_STATUS This is the identifier for this parameter. 

 

Macro (Services) Description 

HPDI32_IO_STATUS__GET(h,w,g) This retrieves a current status. 

HPDI32_IO_STATUS__XXX_GET(h,g) This retrieves a current status. * 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 

6.4.16. I/O Parameter: Timeout 

The purpose of this parameter is to modify and report the API’s timeout limit for I/O requests. When I/O requests 

are made the API will terminate the request if it has not completed in the specified number of seconds. The 

following tables describe the macros associated with this parameter. 

NOTE: Applications should avoid setting the timeout limit to zero (0) when using any form of 

DMA. Doing so may result is inefficient use of DMA and it may be noticeable slower than 

expected. 

NOTE: When using Demand Mode DMA applications should set the timeout period long enough 

to guarantee that successful transfers complete before the timeout limit expires. This is because the 

transfer will be aborted when the timeout period lapses and because the amount of data transferred 

will be unknown. 

Macro (Parameter) Description 

HPDI32_IO_TIMEOUT This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IO_TIMEOUT_DEFAULT This selects the default, which is 10 seconds 

HPDI32_IO_TIMEOUT_MAX This selects the maximum timeout limit, which is one hour. 

HPDI32_IO_TIMEOUT_NO_WAIT This sets the timeout to zero (0) seconds. This means the I/O request will 

terminate rather than wait for additional data transfer to occur.  

 

Macro (Services) Description 

HPDI32_IO_TIMEOUT__GET(h,w,g) This retrieves a current setting. 

HPDI32_IO_TIMEOUT__RESET(h,w) This resets a setting. 

HPDI32_IO_TIMEOUT__SET(h,w,s) This requests a setting change. 

HPDI32_IO_TIMEOUT__XXX_GET(h,g) This retrieves a current setting. * 

HPDI32_IO_TIMEOUT__XXX_NO_WAIT(h) This requests a setting of do not wait. * 

HPDI32_IO_TIMEOUT__XXX_RESET(h) This resets a setting. * 

HPDI32_IO_TIMEOUT__XXX_SET(h,s) This requests a setting change. * 

* The XXX sequence refers to the following individual options: RX for the data reads and TX for the data writes. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

81 

General Standards Corporation, Phone: (256) 880-8787 
 

6.5. Interrupt Parameters 

The purpose of the Interrupt Parameters is to permit access to and control of the HPDI32 hardware based interrupts. 

All Interrupt Parameters are put in a default state when the device is opened and are returned to that state via the 

hpdi32_init() service. The hardware based interrupt configuration is returned to its default state via the 

hpdi32_reset() service. The configuration of the Interrupt Parameters is retained mostly within the HPDI32 

firmware registers. Applications have access to the HPDI32 interrupt registers but it is advised that they be accessed 

only through the Interrupt Parameters services. When using the service hpdi32_config(), any number or 

combination of HPDI32_WHICH_IRQ_XXX bits may be used, even none. An interrupt is accessed only if it’s 

respective “which” bit is set. If none is set, then no action will be taken. 

NOTE: The interrupt related “which” bits include both general and specific definitions for those 

cable signals which can have dual functionality. The purpose of providing the different forms is to 

permit greater clarify in application code. These are for reference and usability purposes only and 

do not refer to different interrupts. In addition, use of any particular definition will not alter which 

functionality is active at any particular time. 

Each of the Interrupt Parameters includes a number of utility service macros. Rather include all variations of these 

macros, the table list many using an XXX string. In the tables the XXX sequence generally refers to the following 

individual options: TX_E, TX_AE, TX_AF, TX_F, RX_E, RX_AE, RX_AF, RX_F for the Empty, Almost Empty, 

Almost Full and Full Tx and Rx fill levels, C0A and C0I for Cable Command Signal 0 active and inactive, 

respectively, C1, C2, C3, C4, C5 and C6 for Cable Command Signals one through six, the Flow Control configured 

Cable Command signals FVB and FVE for Frame Valid Begin and End, LV for Line Valid, SV for Status Valid, RR 

for Rx Ready, TR for Tx Ready, RE for Rx Enable and TE for Tx Enable, and the GPIO configured Cable Command 

signals GPIO_0, GPIO_1, GPIO_2, GPIO_3, GPIO_4, GPIO_5, as well as GPIO_6H and GPIO_6L for GPIO 

6 High and Low. 

The following table lists the Interrupt Parameters. 

Parameter Macros Description 

HPDI32_IRQ_CALLBACK_ARG This refers to an arbitrary, application supplied callback argument. 

HPDI32_IRQ_CALLBACK_FUNC This refers to an application supplied callback function for interrupt 

notification. 

HPDI32_IRQ_ENABLE This refers to enabling or disabling an interrupt. 

HPDI32_IRQ_STATE This refers to the state of an interrupt source. 

HPDI32_IRQ_TRIGGER_CONFIG This refers to the trigger configuration for an interrupt source. 

6.5.1. Interrupt Parameter: Callback Argument 

The purpose of this parameter is to modify and report the application provided argument that is receives as “arg2” 

during an interrupt callback event. The following tables describe the macros associated with this parameter. 

NOTE: Applications must remember that the macros GSC_NO_CHANGE and GSC_DEFAULT 

have special meaning when applying parameter modifications. If the application specific value 

being supplied for this parameter happens to equal either of these values, then the results will be 

according to the API’s use of these special values rather than the applications intent. 

NOTE: This parameter can be accessed and altered during the callback, but the callback must 

return before subsequent callbacks can be made on the same interrupt. 

Macro (Parameter) Description 

HPDI32_IRQ_CALLBACK_ARG This is the identifier for this parameter. 

 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

82 

General Standards Corporation, Phone: (256) 880-8787 
 

Macro (Values) Description 

HPDI32_IRQ_CALLBACK_ARG_DEFAULT This is the default, which is zero. 

 

Macro (Services) Description 

HPDI32_IRQ_CALLBACK_ARG__GET(h,w,g) This retrieves a current setting. 

HPDI32_IRQ_CALLBACK_ARG__RESET(h,w) This resets a setting. 

HPDI32_IRQ_CALLBACK_ARG__SET(h,w,s) This requests a setting change. 

HPDI32_IRQ_CALLBACK_ARG__XXX_GET(h,g) This retrieves a current setting. * 

HPDI32_IRQ_CALLBACK_ARG__XXX_RESET(h) This resets a setting. * 

HPDI32_IRQ_CALLBACK_ARG__XXX_SET(h,s) This requests a setting change. * 

* The XXX sequence refers to the service macro options given in paragraph 6.5, page 81. 

6.5.2. Interrupt Parameter: Callback Function 

The purpose of this parameter is to modify and report the application provided callback function pointer for an 

interrupt callback event. The following tables describe the macros associated with this parameter. 

NOTE: This parameter can be accessed and altered during the callback, but the callback must 

return before subsequent callbacks can be made on the same interrupt. 

Macro (Parameter) Description 

HPDI32_IRQ_CALLBACK_FUNC This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IRQ_CALLBACK_FUNC_DEFAULT This is the default, which is NULL. 

 

Macro (Services) Description 

HPDI32_IRQ_CALLBACK_FUNC__GET(h,w,g) This retrieves a current function pointer. 

HPDI32_IRQ_CALLBACK_FUNC__RESET(h,w) This resets the function pointer. 

HPDI32_IRQ_CALLBACK_FUNC__SET(h,w,s) This requests a function pointer change. 

HPDI32_IRQ_CALLBACK_FUNC__XXX_GET(h,g) This retrieves a current function pointer. * 

HPDI32_IRQ_CALLBACK_FUNC__XXX_RESET(h) This resets a function pointer. * 

HPDI32_IRQ_CALLBACK_FUNC__XXX_SET(h,s) This requests a function pointer change. * 

* The XXX sequence refers to the service macro options given in paragraph 6.5, page 81. 

6.5.3. Interrupt Parameter: Enable 

The purpose of this parameter is to modify and report the enabled state of the respective interrupt. The following 

tables describe the macros associated with this parameter. 

NOTE: The Rx FIFO Almost Empty and Rx FIFO Empty interrupts may be used for I/O read 

requests so should not be disabled by applications. The Tx FIFO Almost Full and Tx FIFO Full 

interrupts may be used for I/O write requests so should not be disabled by applications. Disabling 

any of these interrupts can interfere with normal I/O operations. This could result in reduced I/O 

performance or even data loss.  

NOTE: Utility access macros are not provided for the Rx FIFO Almost Empty, Rx FIFO Empty, 

Tx FIFO Almost Full and Tx FIFO Full interrupts. This is to discourage applications from 

disabling these interrupts. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

83 

General Standards Corporation, Phone: (256) 880-8787 
 

NOTE: When supplying the GSC_DEFAULT macro as an assignment value for this parameter 

using any of the below utility service macros, be sure to supply only a single “which” bit. If this is 

not done, the default assigned will be for that interrupt with the lowest value “which” bit specified. 

Macro (Parameter) Description 

HPDI32_IRQ_ENABLE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IRQ_ENABLE_DEFAULT This is the default which is disabled. 

HPDI32_IRQ_ENABLE_NO This option disables the interrupt. 

HPDI32_IRQ_ENABLE_YES This option enables the interrupt. 

 

Macro (Services) Description 

HPDI32_IRQ_ENABLE__GET(h,w,g) This retrieves a current setting. 

HPDI32_IRQ_ENABLE__RESET(h,w) This resets a setting. 

HPDI32_IRQ_ENABLE__SET(h,w,s) This requests a setting change. 

HPDI32_IRQ_ENABLE__XXX_GET(h,g) This retrieves a current setting. * 

HPDI32_IRQ_ENABLE__XXX_NO(h) This requests that an interrupt be disabled. * 

HPDI32_IRQ_ENABLE__XXX_RESET(h) This resets a setting. * 

HPDI32_IRQ_ENABLE__XXX_SET(h,s) This requests a setting change. * 

HPDI32_IRQ_ENABLE__XXX_YES(h) This requests that an interrupt be enabled. * 

* The XXX sequence refers to the service macro options given in paragraph 6.5, page 81. Refer to the above notes 

for certain exceptions. 

6.5.4. Interrupt Parameter: State 

The purpose of this read-only parameter is to report the state of the respective interrupt source. The following tables 

describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_IRQ_STATE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IRQ_STATE_ACTIVE This reflects that the source was active. 

HPDI32_IRQ_STATE_INACTIVE This reflects that the source was inactive. 

 

Macro (Services) Description 

HPDI32_IRQ_STATE__GET(h,w,g) This retrieves a current state. 

HPDI32_IRQ_STATE__XXX_GET(h,g) This retrieves a current state. * 

* The XXX sequence refers to the service macro options given in paragraph 6.5, page 81. 

6.5.5. Interrupt Parameter: Trigger Configuration 

The purpose of this parameter is to modify and report the Trigger Configuration of an interrupt. The following tables 

describe the macros associated with this parameter. 

NOTE: The Rx FIFO Almost Empty and Rx FIFO Empty interrupts may be used for I/O read 

requests. The Tx FIFO Almost Full and Tx FIFO Full interrupts may be used for I/O write 

requests. The Trigger Configuration for these interrupts should not be altered by applications as it 

can interfere with normal I/O operations. This could result in reduced I/O performance or even 

data loss.  



HPDI32, Software Development Kit 6.1.0, Reference Manual 

84 

General Standards Corporation, Phone: (256) 880-8787 
 

NOTE: Utility access macros are not provided for the Rx FIFO Almost Empty, Rx FIFO Empty, 

Tx FIFO Almost Full and Tx FIFO Full interrupt Trigger Configuration parameters. This is to 

discourage applications from altering this parameter for these interrupts. 

Macro (Parameter) Description 

HPDI32_IRQ_TRIGGER_CONFIG This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_IRQ_TRIGGER_CONFIG_DEFAULT This option refers to default which is Edge Hi. 

HPDI32_IRQ_TRIGGER_CONFIG_EDGE_HI This option refers to triggering on a rising edge. 

HPDI32_IRQ_TRIGGER_CONFIG_EDGE_LOW This option refers to triggering on a falling edge. 

HPDI32_IRQ_TRIGGER_CONFIG_LEVEL_HI This option refers to triggering on a high level. 

HPDI32_IRQ_TRIGGER_CONFIG_LEVEL_LOW This option refers to triggering on a low level. 

 

Macro (Services) Description 

HPDI32_IRQ_TRIGGER_CONFIG__GET(h,w,g) This retrieves a current setting. 

HPDI32_IRQ_TRIGGER_CONFIG__RESET(h,w) This resets a setting. 

HPDI32_IRQ_TRIGGER_CONFIG__SET(h,w,s) This requests a setting change. 

HPDI32_IRQ_TRIGGER_CONFIG__XXX_EDGE_HI(h) This requests a trigger on a rising edge. * 

HPDI32_IRQ_TRIGGER_CONFIG__XXX_EDGE_LOW(h) This requests a trigger on a falling edge. * 

HPDI32_IRQ_TRIGGER_CONFIG__XXX_GET(h,g) This retrieves a current setting. * 

HPDI32_IRQ_TRIGGER_CONFIG__XXX_LEV_HI(h) This requests a trigger on a high level. * 

HPDI32_IRQ_TRIGGER_CONFIG__XXX_LEV_LOW(h) This requests a trigger on a low level. * 

HPDI32_IRQ_TRIGGER_CONFIG__XXX_RESET(h) This resets a setting. * 

HPDI32_IRQ_TRIGGER_CONFIG__XXX_SET(h,s) This requests a setting change. * 

* The XXX sequence refers to the service macro options given in paragraph 6.5, page 81. Refer to the above notes 

for certain exceptions. 

6.6. Miscellaneous Parameters 

The purpose of the Miscellaneous Parameters is to permit access to and control of HPDI32 parameters which do not 

readily fit into the other parameter categories. All Miscellaneous Parameters are put in a default state when the 

device is opened and are returned to that state via the hpdi32_init() service. The hardware based 

Miscellaneous Parameters are returned to their default states via the hpdi32_reset() service. The configuration 

of one or more Miscellaneous Parameters is retained within the HPDI32 firmware registers. Applications have 

access to these HPDI32 registers but it is advised that these parameters be accessed only through the Miscellaneous 

Parameter services. When using the service hpdi32_config(), the “which” bits argument is ignored. The 

following table lists the Miscellaneous Parameters. 

Parameter Macros Description 

HPDI32_MISC_BOARD_JUMPERS This refers to the board’s user jumpers. 

HPDI32_MISC_FAVOR_TX This refers to option of favoring transmit operation over receive 

operations for certain parameters. 

HPDI32_MISC_FEATURES This refers to the set of supported features. 

HPDI32_MISC_MAP_GSC_REGS This refers to mapping of the firmware registers into API and 

application memory space. 

HPDI32_MISC_MAP_GSC_REGS_PTR This refers to the application accessible pointer to the firmware 

registers. 

HPDI32_MISC_MAP_PLX_REGS This refers to mapping of the PLX feature set registers into API 

memory space. 

HPDI32_MISC_PCI_BUS_WIDTH This refers to width of the board’s PCI interface: 32 or 64-bits. 

HPDI32_MISC_STRICT_ARGUMENTS This refers to the processing of certain unrecognized parameter 

values when applying settings. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

85 

General Standards Corporation, Phone: (256) 880-8787 
 

HPDI32_MISC_STRICT_CONFIG This refers to the processing of invalid hardware configuration 

options when applying settings. 

HPDI32_MISC_TX_RX_TRI_STATE This refers to the tri-stating of the Tx Enable and Rx Enable cable 

signals when not being driven high. 

6.6.1. Miscellaneous Parameter: Board Jumpers 

The purpose of this read-only parameter is to report the state of the User Jumper pins on the board, for those that 

support the feature. The jumper state is reported in the lower two bits of the value retrieved. The following tables 

describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_MISC_BOARD_JUMPERS This is the identifier for this parameter. 

 

Macro (Services) Description 

HPDI32_MISC_BOARD_JUMPERS__GET(h,g) This retrieves the current state. 

6.6.2. Miscellaneous Parameter: Favor Tx 

The purpose of this parameter is to control and report the API’s favoring of transmit operations over receive 

operations. When the transmitter is favored a small set of configurable parameters, when appropriately processed, 

are configured to favor transmit operations. If disabled, these same parameters, when appropriately processed, are 

configured to favor receive operations. The following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_MISC_FAVOR_TX This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_MISC_FAVOR_TX_DEFAULT This is the default, which is disable. 

HPDI32_MISC_FAVOR_TX_DISABLE This option disables the option. 

HPDI32_MISC_FAVOR_TX_ENABLE This option enables the option. 

 

Macro (Services) Description 

HPDI32_MISC_FAVOR_TX__GET(h,g) This retrieves the current setting. 

HPDI32_MISC_FAVOR_TX__NO(h) This requests that the option be disabled. 

HPDI32_MISC_FAVOR_TX__SET(h,s) This requests a setting change. 

HPDI32_MISC_FAVOR_TX__YES(h) This requests that the option be enabled. 

6.6.3. Miscellaneous Parameter: Features 

The purpose of this read-only parameter is to report the presence of various firmware based HPDI32 features. While 

this is a read-only parameter the feature being tested must be specified in the respective structure’s “set” argument. 

The following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_MISC_FEATURES This is the identifier for this parameter. 

 

Macro (Set Values) Description 

HPDI32_MISC_FEATURES_COUNT This refers to the number of features supported by this 

parameter. 

HPDI32_MISC_FEATURES_1_CYCLE_DISABLE This refers to the Board Control Register’s Single Cycle 

Disable bit. 

HPDI32_MISC_FEATURES_DMA_CH1 This refers to support for transmitting with Demand 

Mode DMA using DMA channel 1 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

86 

General Standards Corporation, Phone: (256) 880-8787 
 

HPDI32_MISC_FEATURES_FIFO_SIZE This refers to the Tx/Rx FIFO Size Registers. 

HPDI32_MISC_FEATURES_FSR This refers to the Feature Set Register. 

HPDI32_MISC_FEATURES_GPIO_0_5 This refers to the GPIO 0 to 5 signals available on the 

external cable interface. 

HPDI32_MISC_FEATURES_GPIO_6 This refers to the GPIO 6 signal available on the external 

cable interface. 

HPDI32_MISC_FEATURES_ICR This refers to the interrupt configuration registers IELR 

and IHLR. 

HPDI32_MISC_FEATURES_OVR_UNDR_RUN This refers to the Tx/Rx FIFO Over/Under Run bits. 

HPDI32_MISC_FEATURES_TX_AUTO_STOP This refers to the Board Control Register’s Tx Start Auto 

Clear Disable bit. 

HPDI32_MISC_FEATURES_USER_JUMPERS This refers to the presence of the user configurable 

jumpers on the board. 

 

Macro (Get Values) Description 

HPDI32_MISC_FEATURES_ABSENT This means the feature is absent from the HPDI32. 

HPDI32_MISC_FEATURES_PRESENT This means the feature is present in the HPDI32. 

 

Macro (Services) Description 

HPDI32_MISC_FEATURES__GET(h,s,g) This requests support status for a feature. 

HPDI32_MISC_FEATURES__XXX(h,g) This requests support status for feature XXX. * 

* The XXX sequence refers to the parameter value extensions given in the Set Values table. The extension is that test 

that follows the base parameter macro text. 

6.6.4. Miscellaneous Parameter: GSC Register Mapping 

The purpose of this parameter is to control and report the mapping of GSC registers into application and API 

memory space. This parameter should always be enabled, even if unused by applications. If it is disabled, the API’s 

access to HPDI32 firmware registers operates with reduced efficiency. The following tables describe the macros 

associated with this parameter. 

NOTE: There are circumstances where this feature cannot be enabled and utilized. This is usually 

limited to embedded hosts here the BIOS doesn’t place all PCI memory access regions on CPU 

Page Size boundaries. If the BIOS cannot be configured to utilize such boundaries, then API 

performance is degraded. 

NOTE: Parameter access utility macros are limited for this parameter as it should always be 

enabled. The parameter should only be disabled for testing purposes. 

Macro (Parameter) Description 

HPDI32_MISC_MAP_GSC_REGS This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_MISC_MAP_GSC_REGS_DEFAULT This is the default, which is enabled. 

HPDI32_MISC_MAP_GSC_REGS_DISABLE This refers to the disabled state. When disabled access to 

firmware registers must go through the Device Driver, which 

reduces efficiency. 

HPDI32_MISC_MAP_GSC_REGS_ENABLE This refers to the enabled state. When enabled access to 

firmware registers is done entirely within the API, which 

increases efficiency. 

 

Macro (Services) Description 

HPDI32_MISC_MAP_GSC_REGS__ENABLE(h) This requests that the option be enabled. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

87 

General Standards Corporation, Phone: (256) 880-8787 
 

HPDI32_MISC_MAP_GSC_REGS__GET(h,g) This requests the current setting. 

HPDI32_MISC_MAP_GSC_REGS__RESET(h) This resets the setting. 

HPDI32_MISC_MAP_GSC_REGS__SET(h,s) This requests a setting change. 

6.6.5. Miscellaneous Parameter: GSC Register Mapping Pointer 

The purpose of this read-only parameter is to retrieve the pointer the API uses for direct access to HPDI32 firmware 

registers. If the GSC Register Mapping feature is enabled the application can use the pointer to directly access 

HPDI32 firmware registers. If disabled, the pointer returned is NULL. The following tables describe the macros 

associated with this parameter. 

NOTE: There are circumstances where this feature cannot be utilized. This is usually limited to 

embedded hosts here the BIOS doesn’t place all PCI memory access regions on CPU Page Size 

boundaries. If the BIOS cannot be configured to utilize such boundaries, then API performance is 

degraded. 

Macro (Parameter) Description 

HPDI32_MISC_MAP_GSC_REGS_PTR This is the identifier for this parameter. 

 

Macro (Services) Description 

HPDI32_MISC_MAP_GSC_REGS_PTR__GET(h,g) This requests the current pointer. 

6.6.6. Miscellaneous Parameter: PLX Register Mapping 

The purpose of this parameter is to control and report the mapping of PLX registers into API memory space. This 

parameter should always be enabled, even though it is not directly usable by applications. If it is disabled, the API’s 

access to PLX registers operates with reduced efficiency. The following tables describe the macros associated with 

this parameter. 

NOTE: There are circumstances where this feature cannot be enabled and utilized. This is usually 

limited to embedded hosts here the BIOS doesn’t place all PCI memory access regions on CPU 

Page Size boundaries. If the BIOS cannot be configured to utilize such boundaries, then API 

performance is degraded. 

NOTE: Parameter access utility macros are limited for this parameter as it should always be 

enabled. The parameter should only be disabled for testing purposes. 

Macro (Parameter) Description 

HPDI32_MISC_MAP_PLX_REGS This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_MISC_MAP_PLX_REGS_DEFAULT This is the default, which is enabled. 

HPDI32_MISC_MAP_PLX_REGS_DISABLE This refers to the disabled state. When disabled access to PLX 

registers must go through the Device Driver, which reduces 

efficiency. 

HPDI32_MISC_MAP_PLX_REGS_ENABLE This refers to the enabled state. When enabled access to PLX 

registers is done entirely within the API, which increases 

efficiency. 

 

Macro (Services) Description 

HPDI32_MISC_MAP_PLX_REGS__ENABLE(h) This request that the option be enabled. 

HPDI32_MISC_MAP_PLX_REGS__GET(h,g) This requests the current setting. 

HPDI32_MISC_MAP_PLX_REGS__RESET(h) This resets the current setting. 

HPDI32_MISC_MAP_PLX_REGS__SET(h,s) This request a change to the current setting. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

88 

General Standards Corporation, Phone: (256) 880-8787 
 

6.6.7. Miscellaneous Parameter: PCI Bus Width 

The purpose of this read-only parameter is to retrieve the HPDI32 board’s PCI bus width. This parameter is 

provided for informational purposes only. The following tables describe the macros associated with this parameter. 

NOTE: While this parameter identifies the bus width of the board’s PCI interface, this has no 

bearing on the size of the PCI slot the board is plugged into. The API does not have this 

information. 

Macro (Parameter) Description 

HPDI32_MISC_PCI_BUS_WIDTH This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_MISC_PCI_BUS_WIDTH_32 This reflects that the board has a 32-bit bus. 

HPDI32_MISC_PCI_BUS_WIDTH_64 This reflects that the board has a 64-bit bus. 

 

Macro (Services) Description 

HPDI32_MISC_PCI_BUS_WIDTH__GET(h,g) This requests the board’s PCI bus width. 

6.6.8. Miscellaneous Parameter: Strict Arguments 

The purpose of this parameter is to control and retrieve the setting that governs the API’s handling of certain 

unrecognized values. For example, if the setting supplied when adjusting this parameter is not listed in the 

appropriate table below, then the API can either respond with an error condition or infer the application’s intent per 

the value that was received. If Strict Argument processing is enabled, then processing is terminated with an error 

status. Otherwise the API is lenient and will try to proceed gracefully. This policy is applicable to parameter 

processing only, and applies to most parameters. The following tables describe the macros associated with this 

parameter. 

Macro (Parameter) Description 

HPDI32_MISC_STRICT_ARGUMENTS This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_MISC_STRICT_ARGUMENTS_DEFAULT This is the default, which is lenient processing. 

HPDI32_MISC_STRICT_ARGUMENTS_DISABLE This refers to lenient processing. 

HPDI32_MISC_STRICT_ARGUMENTS_ENABLE This refers to strict processing. 

 

Macro (Services) Description 

HPDI32_MISC_STRICT_ARGUMENTS__GET(h,g) This requests the current setting. 

HPDI32_MISC_STRICT_ARGUMENTS__NO(h) This requests lenient processing. 

HPDI32_MISC_STRICT_ARGUMENTS__RESET(h) This resets the setting. 

HPDI32_MISC_STRICT_ARGUMENTS__SET(h,s) This requests a setting change. 

HPDI32_MISC_STRICT_ARGUMENTS__YES(h) This requests strict processing. 

6.6.9. Miscellaneous Parameter: Strict Configuration 

The purpose of this parameter is to control and retrieve the setting that governs the API’s handling of certain invalid 

hardware configuration requests. Support for the parameter is not yet incorporated into the API. For example, if 

altering a GPIO setting for a Cable Command signal not configured for GPIO, the API can either respond with an 

error condition or infer the application’s intent per the request. If strict processing is enabled, then processing is 

terminated with an error status. Otherwise the API is lenient and will try to proceed gracefully. This policy is 

applicable to parameter processing only, and applies to hardware based parameters only. The following tables 

describe the macros associated with this parameter. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

89 

General Standards Corporation, Phone: (256) 880-8787 
 

Macro (Parameter) Description 

HPDI32_MISC_STRICT_CONFIG This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_MISC_STRICT_CONFIG_DEFAULT This is the default, which is lenient processing. 

HPDI32_MISC_STRICT_CONFIG_DISABLE This refers to lenient processing. 

HPDI32_MISC_STRICT_CONFIG_ENABLE This refers to strict processing. 

 

Macro (Services) Description 

HPDI32_MISC_STRICT_CONFIG__GET(h,g) This requests the current setting. 

HPDI32_MISC_STRICT_CONFIG__NO(h) This requests lenient processing. 

HPDI32_MISC_STRICT_CONFIG__RESET(h) This resets the setting. 

HPDI32_MISC_STRICT_CONFIG__SET(h,s) This requests a setting change. 

HPDI32_MISC_STRICT_CONFIG__YES(h) This requests strict processing. 

6.6.10. Miscellaneous Parameter: Tx/Rx Tri-State 

The purpose of this parameter is to control and retrieve the HPDI32’s tri-stating of the Tx Enable and Rx Enable 

signals when not driven high. (In the hardware user manual this is referred to as Test Mode as it was introduced for 

connected two HPDI32 boards back-to-back for testing purposes.) The following tables describe the macros 

associated with this parameter. 

Macro (Parameter) Description 

HPDI32_MISC_TX_RX_TRI_STATE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_MISC_TX_RX_TRI_STATE_DEFAULT This is the default, which is disabled. 

HPDI32_MISC_TX_RX_TRI_STATE_DISABLE This refers to the disabled option, in which the Tx Enable 

and Rx Enable signals are always driven. 

HPDI32_MISC_TX_RX_TRI_STATE_ENABLE This refers to the enabled option, in which the Tx Enable 

and Rx Enable signals are driven only when high. 

 

Macro (Services) Description 

HPDI32_MISC_TX_RX_TRI_STATE_ENABLE__GET(h,g) This requests the current setting. 

HPDI32_MISC_TX_RX_TRI_STATE_ENABLE__NO(h) This request that the option be disabled. 

HPDI32_MISC_TX_RX_TRI_STATE_ENABLE__RESET(h) This resets the setting. 

HPDI32_MISC_TX_RX_TRI_STATE_ENABLE__SET(h,s) This requests a setting change. 

HPDI32_MISC_TX_RX_TRI_STATE_ENABLE__YES(h) This request that the option be enabled. 

6.7. Receiver Parameters 

The purpose of the Receiver Parameters is to permit access to and control of those parameters that pertain 

exclusively to the HPDI32’s receiver features. All Receiver Parameters are put in a default state when the device is 

opened and are returned to that state via the hpdi32_init() and hpdi32_reset() services. The 

configuration of these parameters is retained within the HPDI32 firmware registers. Applications have access to the 

HPDI32 registers but it is advised that these features be accessed only through the Receiver Parameter services. 

When using the service hpdi32_config(), the “which” bits argument is ignored. The following table lists the 

Receiver Parameters. 

Parameter Macros Description 

HPDI32_RX_ENABLE This refers to enabling or disabling the receiver. 

HPDI32_RX_OVERRUN This refers to the Rx FIFO being overrun with additional data when already 

full. 

HPDI32_RX_ROW_COUNT This refers to the number of data samples received during a frame while the 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

90 

General Standards Corporation, Phone: (256) 880-8787 
 

Line Valid signal is active. 

HPDI32_RX_STATE This refers to active or inactive state of the receiver. 

HPDI32_RX_STATUS_COUNT This refers to the number of data samples received during a frame while the 

Status Valid signal is active. 

HPDI32_RX_UNDER_RUN This refers to the Rx FIFO being read when it is already empty. 

6.7.1. Receiver Parameter: Rx Enable 

The purpose of this parameter is to control and retrieve the enable state of the receiver. The following tables 

describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_RX_ENABLE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_RX_ENABLE_DEFAULT This is the default, which is disabled. 

HPDI32_RX_ENABLE_NO This refers to the disabled option, when prevents data transfer. 

HPDI32_RX_ENABLE_YES This refers to the enabled option, which permits data transfer. 

 

Macro (Services) Description 

HPDI32_RX_ENABLE__GET(h,g) This requests the current setting. 

HPDI32_RX_ENABLE__NO(h) This request that the option be disabled. 

HPDI32_RX_ENABLE__RESET(h) This reset the setting. 

HPDI32_RX_ENABLE__SET(h,s) This requests a setting change. 

HPDI32_RX_ENABLE__YES(h) This request that the option be enabled. 

6.7.2. Receiver Parameter: Rx Overrun 

The purpose of this parameter is to control and retrieve the Rx Overrun condition, when supported in the HPDI32. 

The following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_RX_OVERRUN This is the identifier for this parameter. 

 

Macro (Set Values) Description 

HPDI32_RX_OVERRUN_CLEAR This refers to clearing the condition. 

HPDI32_RX_OVERRUN_DEFAULT This is the default, which is to clear the condition. 

HPDI32_RX_OVERRUN_IGNORE This refers to ignoring the condition (do not clear it). 

 

Macro (Get Values) Description 

HPDI32_RX_OVERRUN_NO This reflects that the condition does not exist. 

HPDI32_RX_OVERRUN_YES This reflects that the condition does exist. 

 

Macro (Services) Description 

HPDI32_RX_OVERRUN__CLEAR(h) This requests that the condition be cleared. 

HPDI32_RX_OVERRUN__GET(h,g) This requests the current condition. 

HPDI32_RX_OVERRUN__SET(h,s) This requests a setting change. 

6.7.3. Receiver Parameter: Row Count 

The purpose of this read-only parameter is to retrieve the count of data samples received over the external cable 

interface during the last frame’s Line Valid active period. The following tables describe the macros associated with 

this parameter. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

91 

General Standards Corporation, Phone: (256) 880-8787 
 

Macro (Parameter) Description 

HPDI32_RX_ROW_COUNT This is the identifier for this parameter. 

 

Macro (Services) Description 

HPDI32_RX_ROW_COUNT__GET(h,g) This requests the current count. 

6.7.4. Receiver Parameter: State 

The purpose of this parameter is to retrieve the Rx Enabled state of the receiver. The following tables describe the 

macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_RX_STATE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_RX_STATE_ACTIVE This means the receiver is active since it is enabled. 

HPDI32_RX_STATE_INACTIVE This means the receiver is inactive since it is disabled. 

 

Macro (Services) Description 

HPDI32_RX_STATE__GET(h,g) This requests the current state. 

6.7.5. Receiver Parameter: Status Count 

The purpose of this read-only parameter is to retrieve the count of data samples received over the external cable 

interface during the last frame’s Status Valid active period. In the hpdi32_rx_config_t structure the parameter 

is listed separately. In the hpdi32_config() service the parameter is accessed only via the parameter identifier. 

The following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_RX_STATUS_COUNT This is the identifier for this parameter. 

 

Macro (Services) Description 

HPDI32_RX_STATUS_COUNT__GET(h,g) This requests the current count. 

6.7.6. Receiver Parameter: Rx Under Run 

The purpose of this parameter is to control and retrieve the Rx Under Run condition, when supported in the HPDI32. 

The following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_RX_UNDER_RUN This is the identifier for this parameter. 

 

Macro (Set Values) Description 

HPDI32_RX_UNDER_RUN_CLEAR This refers to clearing the condition. 

HPDI32_RX_UNDER_RUN_DEFAULT This is the default, which is to clear the condition. 

HPDI32_RX_UNDER_RUN_IGNORE This refers to ignoring the condition (do not clear it). 

 

Macro (Get Values) Description 

HPDI32_RX_UNDER_RUN_NO This reflects that the condition does not exist. 

HPDI32_RX_UNDER_RUN_YES This reflects that the condition does exist. 

 

Macro (Services) Description 

HPDI32_RX_UNDER_RUN__CLEAR(h) This requests that the condition be cleared. 

HPDI32_RX_UNDER_RUN__GET(h,g) This requests the current condition. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

92 

General Standards Corporation, Phone: (256) 880-8787 
 

HPDI32_RX_UNDER_RUN__SET(h,s) This requests a setting change. 

6.8. Transmitter Parameters 

The purpose of the Transmitter Parameters is to permit access to and control of those parameters that pertain 

exclusively to the HPDI32’s transmitter features. All Transmitter Parameters are put in a default state when the 

device is opened and are returned to that state via the hpdi32_init() service. The firmware based Transmitter 

Parameters are also returned to their initial state via the hpdi32_reset() service. The configuration of some of 

these parameters is retained within the HPDI32 firmware registers. Applications have access to the HPDI32 registers 

but it is advised that these features be accessed only through the Transmitter Parameter services. When using the 

service hpdi32_config(), the “which” bits argument is ignored. The following table lists the Receiver 

Parameters. 

Parameter Macros Description 

HPDI32_TX_AUTO_START This refers to automatically starting transmission when a write 

request occurs. 

HPDI32_TX_AUTO_STOP This refers to automatically stopping the transmitter when the Tx 

FIFO hits empty, even if momentarily. 

HPDI32_TX_CLOCK_DIVIDER This refers to the divider that goes between the on-board 

oscillator and the transmitter. 

HPDI32_TX_ENABLE This refers to enabling or disabling the transmitter. 

HPDI32_TX_FLOW_CONTROL This refers to enabling or disabling data flow out the cable. 

HPDI32_TX_LINE_VALID_OFF_COUNT This refers to length of the Line Valid off period. 

HPDI32_TX_LINE_VALID_ON_COUNT This refers to length of the Line Valid on period. 

HPDI32_TX_OVERRUN This refers to Tx FIFO receiving data when it is already full. 

HPDI32_TX_REMOTE_THROTTLE This refers to the remote hardware control the flow of transmit 

data. 

HPDI32_TX_REMOTE_THROTTLE_STATE This refers to state of the remote hardware’s data flow control 

input. 

HPDI32_TX_STATE This refers to state of the transmitter. 

HPDI32_TX_STATUS_VALID_COUNT This refers to length of the Status Valid on period. 

HPDI32_TX_STATUS_VALID_MIRROR This refers to mirroring of the Status Valid pulse on the Line 

Valid signal. 

6.8.1. Transmitter Parameter: Auto Start 

The purpose of this parameter is to control and retrieve the API’s Auto Start feature for the transmitter. If enabled 

(the default), then the API will automatically set the Tx Start bit in the firmware’s Board Control Register to initiate 

data transfer during write requests. If the parameter is disabled, then the application is responsible for setting the Tx 

Start bit, when appropriate. The following tables describe the macros associated with this parameter. 

NOTE: In the HPDI32 firmware, the Tx Start bit operates in parallel with the Tx Remote 

Throttling feature. If Remote Throttling is enabled and the Tx Start bit is set, then data will be 

transferred even if the Remote Throttling input from the remote device says to halt data transfer. 

This is likely to result in data loss. 

NOTE: When the Auto Start parameter is enabled, the API will disable the Remote Throttle 

parameter. When the Remote Throttle parameter is enabled, the API will disable the Auto Start 

parameter. 

Macro (Parameter) Description 

HPDI32_TX_AUTO_START This is the identifier for this parameter. 

 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

93 

General Standards Corporation, Phone: (256) 880-8787 
 

Macro (Values) Description 

HPDI32_TX_AUTO_START_DEFAULT This is the default, which is the disable option. 

HPDI32_TX_AUTO_START_NO This disabled the option. 

HPDI32_TX_AUTO_START_YES This enables the option. 

 

Macro (Services) Description 

HPDI32_TX_AUTO_START__GET(h,g) This requests the current setting. 

HPDI32_TX_AUTO_START__NO(h) This request that the option be disabled. 

HPDI32_TX_AUTO_START__RESET(h) This resets the setting. 

HPDI32_TX_AUTO_START__SET(h,s) This requests a setting change. 

HPDI32_TX_AUTO_START__YES(h) This request that the option be enabled. 

6.8.2. Transmitter Parameter: Auto Stop 

The purpose of this parameter is to control and retrieve the API’s Auto Stop feature for the transmitter. If disabled 

(the default), then once data transmission from the Tx FIFO begins, data transfer from the FIFO will remain enabled 

(permitting subsequent data flow) even if the FIFO becomes empty. The empty situation can occur because 

additional data is not being put into the FIFO or because the FIFO runs dry when data is pulled out faster than it is 

put in. In general, the FIFO can run dry either because the data transmission rate exceeds the PCI bus transfer rate or 

because the PCI bus temporarily stalls under system loading and overhead issues. If enabled, then transmission 

becomes disabled the instant the Tx FIFO hits the empty state. The following tables describe the macros associated 

with this parameter. 

NOTE: This parameter should remain disabled unless an application has a specific need to enable 

it. If enabled, data transmission can appear to halt inexplicably on some systems, or it can have a 

negative impact on overall throughput. 

NOTE: The Tx Auto Stop feature operates both when the Tx Auto Start parameter is enabled and 

when the Tx Flow Control parameter enables transfer. 

Macro (Parameter) Description 

HPDI32_TX_AUTO_STOP This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_TX_AUTO_STOP_DEFAULT This is the default, which is the enable option. 

HPDI32_TX_AUTO_STOP_NO This disabled the option. 

HPDI32_TX_AUTO_STOP_YES This enables the option. 

 

Macro (Services) Description 

HPDI32_TX_AUTO_STOP__GET(h,g) This requests the current setting. 

HPDI32_TX_AUTO_STOP__NO(h) This request that the option be disabled. 

HPDI32_TX_AUTO_STOP__RESET(h) This resets the setting. 

HPDI32_TX_AUTO_STOP__SET(h,s) This requests a setting change. 

HPDI32_TX_AUTO_STOP__YES(h) This request that the option be enabled. 

6.8.3. Transmitter Parameter: Tx Clock Divider 

The purpose of this parameter is to control and retrieve the value in the HPDI32 Tx Clock Divider Register. The 

following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_TX_CLOCK_DIVIDER This is the identifier for this parameter. 

 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

94 

General Standards Corporation, Phone: (256) 880-8787 
 

Macro (Values) Description 

HPDI32_TX_CLOCK_DIVIDER_DEFAULT This is the default, which is zero (0). 

HPDI32_TX_CLOCK_DIVIDER_MAX This is the maximum value that can be written to the register. 

 

Macro (Services) Description 

HPDI32_TX_CLOCK_DIVIDER__GET(h,g) This requests the current setting. 

HPDI32_TX_CLOCK_DIVIDER__SET(h,s) This requests a setting change. 

6.8.4. Transmitter Parameter: Tx Enable 

The purpose of this parameter is to control and retrieve the enable state of the transmitter. The following tables 

describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_TX_ENABLE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_TX_ENABLE_DEFAULT This is the default, which is disabled. 

HPDI32_TX_ENABLE_NO This refers to the disabled option, when prevents data transfer. 

HPDI32_TX_ENABLE_YES This refers to the enabled option, which permits data transfer. 

 

Macro (Services) Description 

HPDI32_TX_ENABLE__GET(h,g) This requests the current setting. 

HPDI32_TX_ENABLE__NO(h) This request that the option be disabled. 

HPDI32_TX_ENABLE__RESET(h) This resets the setting. 

HPDI32_TX_ENABLE__SET(h,s) This requests a setting change. 

HPDI32_TX_ENABLE__YES(h) This request that the option be enabled. 

6.8.5. Transmitter Parameter: Flow Control 

The purpose of this parameter is to control and retrieve the API’s enabling or inhibiting of transmit data flow when 

the transmitter is enabled. If enabled, then transmit data is permitted to flow. If disabled, then data flow is halted. 

This parameter operates by manipulating the Tx Start bit in the firmware’s Board Control Register, which functions 

in parallel with the Tx Remote Throttling parameter. Manipulating this Flow Control parameter has no affect on the 

Tx Remote Throttling parameter and should be used only when the Remote Throttling parameter is disabled. The 

following tables describe the macros associated with this parameter. 

NOTE: In the HPDI32 firmware, the Tx Start bit operates in parallel with the Tx Remote 

Throttling feature. If Remote Throttling is enabled and the Tx Start bit is set, then data will be 

transferred even if the Remote Throttling input from remote device says to halt data transfer. This 

is likely to result in data loss. The Tx Flow Control parameter should not be exercised while 

Remote Throttling is enabled. 

NOTE: Use of this parameter is applicable mostly when Tx Auto Start is disabled. While it can be 

used as data is flowing out the external cable interface, halted data flow will resume movement as 

the API exercises the Tx Auto Start feature. 

NOTE: Applications applying this parameter to halt data flow must be aware that it could result in 

an I/O timeout. 

Macro (Parameter) Description 

HPDI32_TX_FLOW_CONTROL This is the identifier for this parameter. 

 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

95 

General Standards Corporation, Phone: (256) 880-8787 
 

Macro (Values) Description 

HPDI32_TX_FLOW_CONTROL_DEFAULT This is the default, which is to do nothing. 

HPDI32_TX_FLOW_CONTROL_DISABLE This disables data flow. 

HPDI32_TX_FLOW_CONTROL_ENABLE This enables data flow. 

HPDI32_TX_FLOW_CONTROL_IGNORE This option takes no action. 

 

Macro (Services) Description 

HPDI32_TX_FLOW_CONTROL__GET(h,g) This requests the current setting. 

HPDI32_TX_FLOW_CONTROL__RESET(h) This resets the setting. 

HPDI32_TX_FLOW_CONTROL__SET(h,s) This requests a setting change. 

HPDI32_TX_FLOW_CONTROL__START(h) This request that the data flow. 

HPDI32_TX_FLOW_CONTROL__STOP(h) This request that the data stop flowing. 

6.8.6. Transmitter Parameter: Line Valid Off Count 

The purpose of this parameter is to control and retrieve the number of cable clock cycles that the Line Valid signal is 

held low before going high, during a frame. This parameter operates by accessing the board’s Tx Line Invalid 

Length Count Register. The following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_TX_LINE_VALID_OFF_COUNT This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_TX_LINE_VALID_OFF_COUNT_DEFAULT This is the default, which disables the “off” period. 

HPDI32_TX_LINE_VALID_OFF_COUNT_DISABLE This disables the “off” period, which sets the register 

to zero (0). 

HPDI32_TX_LINE_VALID_OFF_COUNT_MAX This is the maximum period length. 

 

Macro (Services) Description 

HPDI32_TX_LINE_VALID_OFF_COUNT__DISABLE(h) This requests that the “off” period be disabled. 

HPDI32_TX_LINE_VALID_OFF_COUNT__GET(h,g) This requests the current setting. 

HPDI32_TX_LINE_VALID_OFF_COUNT__RESET(h) This resets the setting. 

HPDI32_TX_LINE_VALID_OFF_COUNT__SET(h,s) This requests a setting change. 

6.8.7. Transmitter Parameter: Line Valid On Count 

The purpose of this parameter is to control and retrieve the number of cable clock cycles that the Line Valid signal is 

held high after being low, during a frame. This parameter operates by accessing the board’s Tx Line Valid Length 

Count Register. The following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_TX_LINE_VALID_ON_COUNT This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_TX_LINE_VALID_ON_COUNT_DEFAULT This is the default, which disables the “on” period. 

HPDI32_TX_LINE_VALID_ON_COUNT_DISABLE This disables the “on” period, which sets the register to 

zero (0). 

HPDI32_TX_LINE_VALID_ON_COUNT_MAX This is the maximum period length. 

 

Macro (Services) Description 

HPDI32_TX_LINE_VALID_ON_COUNT__DISABLE(h) This requests that the “on” period be disabled. 

HPDI32_TX_LINE_VALID_ON_COUNT__GET(h,g) This requests the current setting. 

HPDI32_TX_LINE_VALID_ON_COUNT__RESET(h) This resets the setting. 

HPDI32_TX_LINE_VALID_ON_COUNT__SET(h,s) This requests a setting change. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

96 

General Standards Corporation, Phone: (256) 880-8787 
 

6.8.8. Transmitter Parameter: Tx Overrun 

The purpose of this parameter is to control and retrieve the Tx Overrun condition, when supported in the HPDI32. 

The following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_TX_OVERRUN This is the identifier for this parameter. 

 

Macro (Set Values) Description 

HPDI32_TX_OVERRUN_CLEAR This refers to clearing the condition. 

HPDI32_TX_OVERRUN_DEFAULT This is the default, which is to clear the condition. 

HPDI32_TX_OVERRUN_IGNORE This refers to ignoring the condition (do not clear it). 

 

Macro (Get Values) Description 

HPDI32_TX_OVERRUN_NO This reflects that the condition does not exist. 

HPDI32_TX_OVERRUN_YES This reflects that the condition does exist. 

 

Macro (Services) Description 

HPDI32_TX_OVERRUN__CLEAR(h) This request that the condition be cleared. 

HPDI32_TX_OVERRUN__GET(h,g) This requests the current condition. 

HPDI32_TX_OVERRUN__SET(h,s) This requests a setting change. 

6.8.9. Transmitter Parameter: Remote Throttle 

The purpose of this parameter is to control and retrieve the board’s Remote Throttling feature. If disabled, the 

default, then data flow is controlled locally rather than by the remote device. If enabled, then the receiving device 

must drive the cable’s Rx Ready signal to control data transfer. The following tables describe the macros associated 

with this parameter. 

NOTE: In the HPDI32 firmware, the Tx Remote Throttling feature operates in parallel with the 

Tx Start bit. If Remote Throttling is enabled and the Tx Start bit is set, then data will be 

transferred even if the Remote Throttling input from the remote device says to halt data transfer. 

This is likely to result in data loss. 

NOTE: When the Remote Throttle parameter is enabled, the API will disable the Auto Start 

parameter. When the Auto Start parameter is enabled, the API will disable the Remote Throttle 

parameter. The setting of both parameters must be coordinated when using the 

hpdi32_tx_config_t structure, in which the Auto Start parameter appears first. 

Macro (Parameter) Description 

HPDI32_TX_REMOTE_THROTTLE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_TX_REMOTE_THROTTLE_DEFAULT This is the default, which is the disable option. 

HPDI32_TX_REMOTE_THROTTLE_DISABLE This disabled the option. 

HPDI32_TX_REMOTE_THROTTLE_ENABLE This enables the option. 

 

Macro (Services) Description 

HPDI32_TX_REMOTE_THROTTLE__DISABLE(h) This request that the option be disabled. 

HPDI32_TX_REMOTE_THROTTLE__ENABLE(h) This request that the option be enabled. 

HPDI32_TX_REMOTE_THROTTLE__GET(h,g) This requests the current setting. 

HPDI32_TX_REMOTE_THROTTLE__RESET(h) This resets the setting. 

HPDI32_TX_REMOTE_THROTTLE__SET(h,s) This requests a setting change. 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

97 

General Standards Corporation, Phone: (256) 880-8787 
 

6.8.10. Transmitter Parameter: Remote Throttle State 

The purpose of this read-only parameter is to retrieve the board’s Remote Throttling state. The state is reported as 

active if the cable signal is configured for Flow Control, if Remote Throttling is enabled, and the signal is driven 

high. The state is otherwise reported as inactive. The following tables describe the macros associated with this 

parameter. 

NOTE: In the HPDI32 firmware, the Tx Remote Throttling feature operates in parallel with the 

Tx Start bit. If Remote Throttling is enabled and the Tx Start bit is set, then data will be 

transferred even if the Remote Throttling input from the remote device says to halt data transfer. 

This is likely to result in data loss. 

Macro (Parameter) Description 

HPDI32_TX_REMOTE_THROTTLE_STATE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_TX_REMOTE_THROTTLE_STATE_ACTIVE Remote Throttling is permitting data flow. 

HPDI32_TX_REMOTE_THROTTLE_STATE_INACTIVE Remote Throttling of data is inactive for one or 

more of the reasons described above. 

 

Macro (Services) Description 

HPDI32_TX_REMOTE_THROTTLE_STATE__GET(h,g) This requests the current state. 

6.8.11. Transmitter Parameter: Tx State 

The purpose of this read-only parameter is to retrieve the board’s data transmission state. If active, then the data 

transmission process is active, either through local or remote control. The state is otherwise reported as inactive. The 

following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_TX_STATE This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_TX_STATE_ACTIVE The data transmission process is active. 

HPDI32_TX_STATE_INACTIVE The data transmission process is inactive. 

 

Macro (Services) Description 

HPDI32_TX_STATE__GET(h,g) This requests the current state. 

6.8.12. Transmitter Parameter: Status Valid Count 

The purpose of this parameter is to control and retrieve the number of cable clock cycles that the Status Valid signal 

is initially help high, during a frame. This parameter operates by accessing the board’s Tx Status Valid Length 

Count Register. The following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_TX_STATUS_VALID_COUNT This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_TX_STATUS_VALID_COUNT_DEFAULT This is the default, which disables the “on” period. 

HPDI32_TX_STATUS_VALID_COUNT_DISABLE This disables the “on” period, which sets the register to 

zero (0). 

HPDI32_TX_STATUS_VALID_COUNT_MAX This is the maximum period length. This is actually 

slightly less than can be written to the register as the true 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

98 

General Standards Corporation, Phone: (256) 880-8787 
 

maximum conflicts with one of the special API macros. 

 

Macro (Services) Description 

HPDI32_TX_STATUS_VALID_COUNT__DISABLE(h) This requests that the “on” period be disabled. 

HPDI32_TX_STATUS_VALID_COUNT__GET(h,g) This requests the current setting. 

HPDI32_TX_STATUS_VALID_COUNT__RESET(h) This resets the setting. 

HPDI32_TX_STATUS_VALID_COUNT__SET(h,s) This requests a setting change. 

6.8.13. Transmitter Parameter: Status Valid Mirror 

The purpose of this parameter is to control and retrieve the board feature that forces the Line Valid signal high 

during the Status Valid high period (the Status Valid high state is mirrored onto the Line Valid signal). The 

following tables describe the macros associated with this parameter. 

Macro (Parameter) Description 

HPDI32_TX_STATUS_VALID_MIRROR This is the identifier for this parameter. 

 

Macro (Values) Description 

HPDI32_TX_STATUS_VALID_MIRROR_DEFAULT This is the default, which disables mirroring. 

HPDI32_TX_STATUS_VALID_MIRROR_DISABLE This disables mirroring. 

HPDI32_TX_STATUS_VALID_MIRROR_ENABLE This enables mirroring. 

 

Macro (Services) Description 

HPDI32_TX_STATUS_VALID_MIRROR__DISABLE(h) This requests that mirroring be disabled. 

HPDI32_TX_STATUS_VALID_MIRROR__ENABLE(h) This requests that mirroring be enabled. 

HPDI32_TX_STATUS_VALID_MIRROR__GET(h,g) This requests the current setting. 

HPDI32_TX_STATUS_VALID_MIRROR__reSET(h) This resets the setting. 

HPDI32_TX_STATUS_VALID_MIRROR__SET(h,s) This requests a setting change. 

 



HPDI32, Software Development Kit 6.1.0, Reference Manual 

99 

General Standards Corporation, Phone: (256) 880-8787 
 

Document History 

Revision Description 

October 31, 2013 Updated to release 6.1.0. The PLX register lists have been removed. 

March 21, 2008 Updated to release 6.0.0, which included porting the SDK to Linux (32-bit and 64-bit)? 

January 15, 2007 Updated to release 5.0.2. 

March 27, 2006 Minor corrections. Updated to SDK release 5.0.1. 

August 18, 2005 Initial release. 

 


