
1

General Standards Corporation

SIO4 Application Interface

User Manual version 1.6.10.2

September 13, 2022

2

Table of Contents

Win32 Installation ... 5

Linux Installation ... 6
Linux Project Setup ... 11
System Level Routines .. 12

GscFindBoards .. 12
GscGetErrorString ... 13

Board Level Routines .. 14

GscOpen .. 14

GscClose .. 15
GscGetInfo... 16
GscGetVersions ... 17
GscLocalRegisterRead .. 18

GscLocalRegisterWrite ... 19
GscAllocPhysicalMemory ... 20

GscMapPhysicalMemory .. 21
GscUnmapPhysicalMemory .. 22

Channel Level Routines... 23

GscSio4ChannelReset ... 23
GscSio4ChannelResetRxFifo .. 24

GscSio4ChannelResetTxFifo .. 25
GscSio4ChannelRegisterRead ... 26

GscSio4ChannelRegisterWrite .. 27
GscSio4GetLastError... 28
GscSio4ChannelSetMode / GscSio4ChannelGetMode 29

GscSio4GetOption/GscSio4SetOption .. 31
GscSio4ChannelSetPinMode / GscSio4ChannelGetPinMode 36

GscSio4ChannelSetPinValue / GscSio4ChannelGetPinValue 37
GscSio4ChannelFifoSizes ... 38
GscSio4ChannelFifoCounts .. 39

GscSio4ChannelSetTxAlmost / GscSio4ChannelGetTxAlmost 40
GscSio4ChannelSetRxAlmost / GscSio4ChannelGetRxAlmost......................... 41

GscSio4ChannelCheckForData ... 42
GscSio4ChannelReceivePacket ... 43

GscSio4ChannelReceiveData .. 44
GscSio4ChannelReceiveDataAndWait ... 45
GscSio4ChannelReceivePlxPhysData ... 46
GscSio4ChannelTransmitData .. 47
GscSio4ChannelTransmitDataAndWait .. 48

GscSio4ChannelTransmitPlxPhysData ... 49
GscSio4ChannelQueryTransfer ... 50

3

GscSio4ChannelWaitForTransfer ... 51

GscSio4ChannelFlushTransfer .. 52
GscSio4ChannelRemoveTransfer ... 53
GscSio4ChannelSetClock .. 56

Protocol Level Routines .. 57
GscSio4HdlcGetDefaults... 57

GscSio4HdlcSetConfig / GscSio4HdlcGetConfig .. 58
GscSio4AsyncGetDefaults .. 59
GscSio4AsyncSetConfig / GscSio4AsyncGetConfig ... 60
GscSio4BiSyncGetDefaults ... 61
GscSio4BiSyncSetConfig / GscSio4BiSyncGetConfig 62

GscSio4SyncGetDefaults .. 63
GscSio4SyncSetConfig / GscSio4SyncGetConfig .. 64

GscSio4BiSync16GetDefaults ... 65
GscSio4BiSync16SetConfig / GscSio4BiSync16GetConfig 66
GscSio4BiSync16GetTxCounts .. 67
GscSio4BiSync16GetRxCounts .. 68

GscSio4BiSync16EnterHuntMode .. 69
GscSio4BiSync16AbortTx .. 70
GscSio4BiSync16Pause... 71

GscSio4BiSync16Resume ... 72
CTC Protocol Routines .. 73

GscSio4CTCAddMajorFrame ... 73
GscSio4CTCAddMinorFrame ... 74

GscSio4CTCGetActiveMajorFrame ... 75
GscSio4CTCGetConfig ... 76

GscSio4CTCGetDefaults... 77
GscSio4CTCReceiveFrames ... 78
GscSio4CTCResetTimer ... 79

GscSio4CTCSetConfig .. 80
GscSio4CTCSetTimer ... 81

GscSio4CTCSwitchMajorFrame ... 82
GscSio4CTCTransmitFrames .. 83

CTC Data Structures and Macro Definitions .. 84

GSC_CTC_CONFIG Structure ... 84

CTC_MINOR_FRAME Structure ... 84

CTC_MAJOR_FRAME Structure .. 85

CTC Local Registers ... 85

CTC Interrupt Definitions ... 85
Structures and Macro Definitions .. 85

Devices Structure ... 85
Interrupt Callback Prototype ... 86

Channel Mode Definitions ... 87
Channel Mode Configuration Structures ... 88

4

GSC_ASYNC_CONFIG Structure ... 88

GSC_HDLC_CONFIG Structure .. 89

GSC_BISYNC_CONFIG Structure .. 90

GSC_SYNC_CONFIG Structure .. 91

GSC_BISYNC16_CONFIG Structure .. 92

Channel Encoding Definitions ... 93
Channel Protocol and Termination Definitions ... 94
Channel Interrupt Definitions .. 95
Channel Pin Definitions... 96

Channel Parity Definitions .. 97
Channel Stop Bits Definition ... 98

Loopback Definitions .. 98
HDLC CRC Definitions .. 98
Local Register Definitions ... 99
Channel Register Definitions... 100

Miscellaneous Token Definitions .. 101

5

Introduction

This document describes the Application Programmers Interface (API) for the General Standards

Corporation I/O Interface boards. Some API functions apply only to certain hardware. Each

function contains the list of boards that it supports. For examples of how to use the API

functions, refer to the source code included in the API examples. These examples are located in

the sub-directories named samples/SIO4B_Test on Win32 systems and in

/usr/local/gsc_api/PlxSdk/Linux/Samples/ on Linux systems.

This API was written using Microsoft Visual Studio .NET 2003 and is compatible with C#.Net

and VB.Net as well as Win32 console and MFC applications, both

“managed” and “unmanaged”. Microsoft Visual C++ 6.0 is supported as well. The API also

supports the Linux platform and the GNU C compiler.

Win32 Installation

The API support files are installed during the standard installation of the driver. The API support

files are placed, by default, into the C:\Program Files\General Standards Corporation\GscApi\

directory and subdirectories and consist of the following files:

GscApi.h – This is the header file that should be included in any source files that utilize the API.

This file contains the function prototypes and constant definitions needed to access the API.

GscApi.lib – This is the import library file that should be included in your project so that the

linker can find the API functions.

GscApi.dll – This is the dynamically linked library file that contains the actual API code. It

should be located in the same directory as your executable or in your system path so that your

application can access the API functions. This file will also be installed to your system32

directory during installation.

It is recommended that you install the driver/API before installing the SIO4B card. After the

installation completes, shut the system down and install the SIO4B card.

Under Windows XP, you may get the following warning during the Hardware Wizard’s

installation of the card. You can safely choose Continue Anyway to install the driver.

6

Linux Installation

On the Linux platform, the General Standards Corp API support files are packaged in an

autotools tarball file called gsc_api.linux.x.x.x.tar.gz. To install the API support

files follow the below installation process.

NOTE: The “x.x.x” sequence refers to the current release version number.

NOTE: The default installation destination is given as /usr/local/, though

the software may be installed elsewhere.

1. All of the scripts for building the GSC API archive content are designed for execution under a Bourne

shell. Open a Borne shell by entering the command below.

sh

2. Change the current directory to the desired installation location, such as /usr/local/.

Copy the tarball file into the current directory so it can be accessed. Extract the files from the

archive with the following command.

tar -xzvf gsc_api.linux.x.x.x.tar.gz

This will create a subdirectory called gsc_api containing the installation files. One of the files

in this directory is the INSTALL text file, which contains instructions for installing the GSC API.

3. Without changing directories, create a new directory named buildGsc from which the

installation process will be run. The Linux command to do this is as follows.

7

mkdir buildGsc

4. Change directories to the buildGsc directory by entering the command below.

cd buildGsc

5. Run the command given below, which will perform a series of checks of the Linux platform to

make sure the libraries and header files needed by the API are present. If the configure command

fails any of its checks, install the missing software and rerun the configure command.

../gsc_api/configure

6. Next, issue the following command to build the GSC API library and samples.

make

7. To install the newly built API files, type the below command at the command line.

make install

This completes the installation process. The API support files are placed, by default, into the

/usr/local/include/GscApi/ and /usr/local/lib/ directories and consist of the

following files:

GscApi.h – This is the header file that should be included in any source files that utilize

the API. This file contains the function prototypes and constant definitions needed to access

the API.

libGscApi.so – This is the shared library that contains the actual API code. It should be

located in the same directory as your executable or in your system path so that your

application can access the API functions.

The driver sources are installed under the gsc_api directory tree in the subdirectory

PlxSdk/Linux/Driver/. The driver must be manually built and loaded as a module.

Currently, the PLX Linux driver is not available on kernel.org, so it is not built into any

distributed Linux kernels. To build a driver perform the following steps.

1. Make sure the environment variable PLX_SDK_DIR is defined and exported. This should be

done by adding the following line to the .profile file in the user’s home directory:

export PLX_SDK_DIR=/usr/local/gsc_api/PlxSdk/

2. To build the PCI9056 and PXI9080 drivers enter the following commands.

cd $PLX_SDK_DIR/Linux/Driver/

./buildriver 9056

./buildriver 9080

Both drivers should build successfully.

8

3. To load each of these drivers enter the following commands. Each driver will load

successfully only if a corresponding board is installed.

cd $PLX_SDK_DIR/Bin

./Plx_load 9056

./Plx_load 9080

4. Once the drivers are installed, any of the GSC or PLX sample applications can be executed.

All the sample applications are built during installation and then installed in the

/usr/local/bin/ directory. This directory should be in the PATH environment variable

on your Linux system, so the samples can be executed from any directory.

The source code of each sample application may also be built with the supplied makefiles.

However, one more step is required before attempting to build any of the sample code. In order

to use the GSC API and PLX API shared libraries, the text file /etc/ld.so.conf must

include the following line.

/usr/local/lib/

If the file does not contain this line, edit the file and add the line. The next time the Linux system

is booted, the Linux dynamic linker run-time bindings will be updated to include the GSC and

PLX libraries. The command ‘ldconfig’ may be used to update the linker run-time bindings if

a system reboot is undesirable.

To build a sample application, change directories to the desired application and type ‘make’

from a shell prompt. The sample applications are located in

/usr/local/gsc_api/Linux/Samples/. The resulting binary executables are written to

the ‘App’ subdirectory of the sample source directory. For example, to build and run the

DisplayBoards sample application, type the following from a shell command prompt.

cd /usr/local/gsc_api/Linux/Samples/DisplayBoards/

make

cd App

./DisplayBoards

Note that there is an environment variable called PLX_DEBUG that is recognized by the sample

application makefiles. This variable may be defined in the sample application makefiles by

uncommenting the following line in the desired make file.

#PLX_DEBUG = 1

If this variable is defined, then a debug executable will be built, with the text “_dbg” suffixed to

the filename. In the example above, if the DisplayBoards application is built for debugging, the

name of the executable generated would be DisplayBoards_dbg. It will be written to the

‘App’ subdirectory, just as it is for the non-debug version of the application.

The API installation also includes the source code for the GSC API library. It is located in

/usr/local/gsc_api/GscApi/. The library can be built from the source code with the

9

make file provided along with the source code. To build the GSC API library, change directories

to that given above and type “make” from the command line. This will build a static library and

place it in the “Library” subdirectory. To link this library with applications instead of the

provided shared library, modify the application make file as appropriate.

10

Win32 Project Setup

To utilize the SIO4B-API in your software application, you should include the GscApi.h header

file and the GscApi.lib static library file in your project. The details of adding these files to your

project will differ from compiler to compiler. We will concentrate on the Microsoft® Visual

Studio .NET 2003 IDE. Support for other compilers may be added in future releases of the

SIO4B-API.

First, be sure that your source code file that will make use of the SIO4B-API has the GscApi.h

header file included as follows:

#include "GscApi.h"

Next, be sure that your project has the GscApi.lib static library file included to be compiled as

part of your project as follows (here is a sample of the workspace for the SIO4B_Test included

with the SIO4B-API in the Samples directory):

Lastly, the GscApi.dll file should be made available to your final executable program – either by

having this file in the same directory or making it available via your system’s path.

11

Linux Project Setup

The standard GNU compiler is supported on Linux. To utilize the SIO4B-API in your software

application, you should include the GscApi.h header file in any source code files that reference

API functions or data types just as you would.

The only other requirement for writing application code to use the API is to add the GSC API

and PLX API libraries to the GNU linker in your makefile. A makefile that builds a sample

application called MyApp, consisting of one C source file called MyApp.c, would contain linker-

related script that looks like the following:

definition of linker

LINK = libtool –mode=link $(LDFLAGS) –o $@

definition of linker flags

here is where the libraries are added to the build.

LDFLAGS =

LIBS = -lGscApi –lPlxApi

suffix rule to invoke linker

MyApp : MyApp.o $(DEPENDENCIES)

$(LINK) $(LDFLAGS) MyApp.o $(LIBS)

12

System Level Routines

The System Level Routines perform functions that either apply to all SIO4 boards in the system,

or are not board specific. These routines are used to gather information about the current system

setup. All of these functions return zero if successful or a non-zero error code if a failure occurs.

GscFindBoards

GscFindBoards(…) is used to report the number of GSC SIO4 boards in the

system as well as some board specific information. An application may call this

function at any time.

Supported Hardware:

All

Prototype:

int GscFindBoards(

Parameters:

int *boardCount,

GSC_DEVICES_STRUCT *results);

boardCount – a pointer to the location to save the number of boards detected. This value

will be zero if no boards are found.

results – a pointer to the devices structure that will be filled in with the information from

the boards found. If this parameter is NULL, no board specific information will be

returned. The boardCount will, however, still be returned. The devices structure is

defined as follows:

typedef struct

{

int busNumber; // Identifies the bus that contains the board

int slotNumber; // Identifies the slot that contains the board

int vendorId; // Identifies the board Vendor

int deviceId; // Identifies the device

char serialNumber[25]; // A unique board serial number

} GSC_DEVICES_STRUCT;

13

GscGetErrorString

GscGetErrorString(…) is used to translate the error codes that are returned by the

various API functions into meaningful null-terminated strings. The strings returned by

this function are guaranteed to be less than 80 characters in length.

Supported Hardware:

All

Prototype:

int GscGetErrorString(

Parameters:

int errorCode,

char *errorString);

errorCode – the error code returned by an API function.

errorString – a pointer to a character string that will be filled with the text that

corresponds to the errorCode.

14

Board Level Routines

The Board Level Routines perform functions that apply to a single SIO4 board. These functions

affect all channels of the SIO4 board. Each of these routines requires the board number

(boardNumber) as the first argument. The board numbers run from 1 up to the number that is

returned from the call to GscFindBoards(…) function. Note that this number will always be 1 in

a single board system.

These routines can be called at any time. All of these functions return zero if successful or a non-

zero error code if a failure occurs.

GscOpen

GscOpen(…) is used to “open” the SIO4 board for operation. It should be called

before any other Board or Channel Level routines and should only be called once. In

the process of opening a board, all four channels are reset and the clock outputs are

disabled.

Supported Hardware:

All

Prototype:

int GscOpen(int boardNumber, int headerVersion);

Parameters:

boardNumber – The number of the desired board. This number corresponds

to the results of the GscFindBoards(…) function. Note that this number will always

be 1 in a single board system.

headerVersion – The version of the api being used by the application. The

value GSC_API_VERSION, from the GscApi.h header file, should always be

passed in for this parameter.

15

GscClose

GscClose(…) is used to “close” the SIO4 board. It should be the last API function

called before the application terminates. This function releases the resources that are used

by the API and driver.

Supported Hardware:

All

Prototype:

int GscClose(int boardNumber);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

16

GscGetInfo

GscGetInfo(…) returns general information about an SIO4 board. The information

is returned in a board info structure.

Supported Hardware:

All

Prototype:

int GscGetInfo(

int boardNumber,

PBOARD_INFO info);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

PBOARD_INFO info – a pointer to the BOARD_INFO structure that holds the retrieved

board information. The BOARD_INFO structure is defined as follows:

typedef struct

{

char apiVersion[20]; // The installed GscApi library version

char driverVersion[20]; // The installed PLX driver version

char fpgaVersion[20]; // The fpga version

char boardType[50]; // The board type, retrieved from the fpga.

} BOARD_INFO, *PBOARD_INFO;

17

GscGetVersions

GscGetVersions(…) returns the various version numbers associated with the API, the

low level driver, and the SIO4 board’s FPGA. The Library and Driver version numbers

are returned in the form: 0xMMmmee where MM is the major release number, mm is the

minor release number, and ee is the engineering release number. The entire version is

defined as MM.mm.ee for example 1.02.05 is returned as 0x00010205. The FPGA

version number has several encoded fields. The low byte contains the actual version

number. Refer to the hardware users manual for details on the other encoded fields.

Supported Hardware:

All

Prototype:

int GscGetVersions(

int boardNumber,

int *libVersion,

int *driverVersion,

int *fpgaVersion);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

libVersion – A pointer to the location that will receive the library (API) version number.

If this value is NULL, no value will be returned.

driverVersion – A pointer to the location that will receive the low level driver version

number. If this value is NULL, no value will be returned.

fpgaVersion – A pointer to the location that will receive the FPGA firmware version

number. If this value is NULL, no value will be returned.

18

GscLocalRegisterRead

GscLocalRegisterRead(…) is used to read the local board registers. These registers

reside within the board’s FPGA. It is not recommended that a user application directly

access these registers. This function is included for diagnostic purposes only.

Supported Hardware:

All

Prototype:

int GscLocalRegisterRead(

int boardNumber,

int reg,

int *value);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

reg – The address of the register to be read. Macros for these addresses are described in

the section titled “Local Register Definitions”.

value – A pointer to the location that will receive the results of the read operation.

19

GscLocalRegisterWrite

GscLocalRegisterWrite(…) is used to write to the local board registers. These

registers reside within the board’s FPGA. It is not recommended that a user application

directly access these registers. This function is included for diagnostic purposes only.

Supported Hardware:

All

Prototype:

int GscLocalRegisterWrite(

int boardNumber,

int reg,

int value);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

reg – The address of the register to be written. Macros for these addresses are described

in the section titled “Local Register Definitions”.

value – The value that is to be written to the local register.

20

GscAllocPhysicalMemory

GscAllocPhysicalMemory(…) is used to attempt to allocate a physically contiguous,

page-locked buffer which is safe for use with DMA operations.

Supported Hardware:

All

Prototype:

int GscAllocPhysicalMemory(

int boardNumber,

PLX_PHYSICAL_MEM *pciMem);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

pcimem – A pointer to a PLX_PHYSICAL_MEM structure that will contain the buffer

information.

21

GscMapPhysicalMemory

GscMapPhysicalMemory(…) is used to map into user virtual space a buffer

previously allocated with GscAllocPhysicalMemory.

Supported Hardware:

All

Prototype:

int GscMapPhysicalMemory(

int boardNumber,

PLX_PHYSICAL_MEM *pciMem);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

pcimem – A pointer to a PLX_PHYSICAL_MEM structure that will contain the buffer

information.

22

GscUnmapPhysicalMemory

GscUnmapPhysicalMemory(…) is used to unmap a buffer previously mapped into

user virtual space with GscAllocPhysicalMemory.

Supported Hardware:

All

Prototype:

int GscUnmapPhysicalMemory(

int boardNumber,

PLX_PHYSICAL_MEM *pciMem);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

pcimem – A pointer to a PLX_PHYSICAL_MEM structure that will contain the buffer

information.

23

Channel Level Routines

The Channel Level Routines perform functions that apply to a single channel on an SIO4 board.

Each of these routines requires the board number (boardNumber) as the first parameter and the

channel number (channel) as the second parameter. The board number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single board

system. The channel number will always be 1, 2, 3, or 4.

These routines can be called at any time. All of these functions return zero if successful or a non-

zero error code if a failure occurs.

GscSio4ChannelReset

GscSio4ChannelReset(…) resets a single channel on the SIO4 board. In addition

to disabling the serial channel, this function sets the “Almost Empty” and

“Almost Full” FIFO flags to 16.

Supported Hardware:

All

Prototype:

int GscSio4ChannelReset(

Parameters:

int boardNumber,

int channel);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

24

GscSio4ChannelResetRxFifo

GscSio4ChannelResetRxFifo(…) resets the Rx FIFO for a single channel. After the

reset, the FIFO will contain no data.

Supported Hardware:

All

Prototype:

int GscSio4ChannelResetRxFifo (

Parameters:

int boardNumber,

int channel);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

25

GscSio4ChannelResetTxFifo

GscSio4ChannelResetTxFifo(…) resets the Tx FIFO for a single channel. After the

reset, the FIFO will contain no data.

Supported Hardware:

All

Prototype:

int GscSio4ChannelResetTxFifo (

Parameters:

int boardNumber,

int channel);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

26

GscSio4ChannelRegisterRead

GscSio4ChannelRegisterRead(…) is used to read the registers in the Universal Serial

Chip that controls the specified channel. It is not recommended that a user application

directly access these registers. This function is included for diagnostic purposes only.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelRegisterRead(

Parameters:

int boardNumber,

int channel,

int reg,

int *value);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

reg – The address of the register to be read. Macros for these addresses are described in

the section titled “Channel Register Definitions”.

value – A pointer to the location that will receive the results of the read operation.

27

GscSio4ChannelRegisterWrite

GscSio4ChannelRegisterWrite(…) is used to write to the registers in the Universal

Serial Chip that controls the specified channel. It is not recommended that a user

application directly access these registers. This function is included for diagnostic

purposes only.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelRegisterWrite(

Parameters:

int boardNumber,

int channel,

int reg,

int value);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

reg – The address of the register to be written. Macros for these addresses are described

in the section titled “Channel Register Definitions”.

value – The value that is to be written to the register.

28

GscSio4GetLastError

GscSio4GetLastError(…) is used to retrieve the error description text of the last

channel-level api call made for the specified channel.

Supported Hardware:

All

Prototype:

int GscSio4GetLastError(

Parameters:

int boardNumber,

int channel,

int errorCode,

char *errorString

char *errorDetail);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

errorCode – The integer error code

errorString – The error description text

errorDetail – More verbose and detailed error description text

29

GscSio4ChannelSetMode / GscSio4ChannelGetMode

GscSio4ChannelSetMode(…) sets a single channel of the SIO4 board to the desired

serial format and bit rate.

Each mode has its own defaults, as described below, which can be altered by calling

the appropriate Channel Level Routines after this function returns.

Supported Hardware:

All

Prototype:

int GscSio4ChannelSetMode(

int boardNumber,

int channel,

int mode,

int bitRate);

int GscSio4ChannelGetMode(

Parameters:

int boardNumber,

int channel,

int *mode,

int *bitRate);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

mode – The desired/current serial mode for this channel. The value should be one of the

following:

GSC_MODE_ASYNC – Sets the channel to standard asynchronous mode. The

channel defaults to 8 data bits, no Parity, and one stop bit. It also uses a

16x sampling clock.

GSC_MODE_ISO – Sets the channel to isochronous mode. Uses the same

defaults as GSC_MODE_ASYNC except the sampling clock, which is set

to 1x.

GSC_MODE_HDLC – Sets the channel to HDLC mode. The Transmit clock is

derived from the on-board source at the rate specified (bitRate) and is also

driven onto the cable for use by the receiving end. The receiver clock is

connected to the cable and should be supplied by the transmitter at the

other end.

30

GSC_MODE_SYNC -

GSC_MODE_SYNC_ENV – (SIO4-SYNC boards only)

GSC_MODE_ASYNC_CV -

GSC_MODE_MONOSYNC -

GSC_MODE_BISYNC -

GSC_MODE_TRANS_BISYNC –

GSC_MODE_NBIF -

GSC_MODE_802_3 -

bitRate – The desired/current serial bit (baud) rate for this channel. This value can range

from 250 to 10,000,000 for synchronous modes and 50 to 1,000,000 for asynchronous

modes.

31

GscSio4GetOption/GscSio4SetOption

GscSio4SetOption(…) sets the value of a protocol configuration option for a channel.

The available options are defined by the GSC_OPTION_NAME enumerated type.

Supported Hardware:

All

Prototype:

int GscSio4SetOption(

int GscSio4GetOption(

int boardNumber,

int channel,

enum GSC_OPTION_NAME option,

int value);

int boardNumber,

int channel,

enum GSC_OPTION_NAME option,

int value[]);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

option – The protocol option to set or retrieve. The available options are defined in the

GSC_OPTION_NAME enumerated type. They are listed in the table below.

value – The value or values set or retrieved . When calling GscSio4SetOption, in some

cases value will actually contain a pair of 16 bit values, such as when configuring the

GSC_SIO_PROTOCOL option. In this case value will contain a protocol option in

the upper 16 bits and a termination option in the lower 16 bits. When retrieving the

value of this option using GscSio4GetOption, the protocol and termination options

will be returned as two elements in the value[] array. The majority of the available

options are represented by a single value. The options that are represented as a pair of

values are listed below:

The table below lists the available options and valid settings for each option. The

GscSio4SetOption() function requires a 32-bit parameter value for all options. For some

of the options, this parameter value represents two 16-bit option settings rather than one

32-bit setting. For these options, the table includes descriptions of the format each 16-bit

32

parameter and its valid values. Likewise, for the GscSio4GetOption() function, which

returns two array entries in the case of the options composed of two 16-bit values, the

table describes each entry returned in the parameter array along with its set of valid

values.

Option Name Description Set Value

Parameter

Format

Get Value

Parameter

Format

Valid Values

GSC_SIO_DATASIZE The size of the transmitted

and received data for a

single channel of the SIO4

board.

[31..0]:

datasize

value[0]:

datasize

1..8 for standard SIO4 boards. 0..

65535 for -SYNC boards

GSC_SIO_GAPSIZE The size of the gap between

transmitted data words for a

single channel of the SIO4

board. The gap size can be

set to any value between 0

and 65535.

[31..0]:

gapsize

value[0]:

gapsize

0..65535 for -SYNC boards only.

GSC_SIO_MSBLSBORDER The byte ordering of both

transmitted and received

data words for a single

channel of the SIO4 board.

The order can be set to

transmit or receive either the

most significant byte first or

the least significant byte

first.

[31..16]:

Tx Order

value[0]:

Tx Order

value[1]:

RxOrder

GSC_MSB_FIRST

GSC_LSB_FIRST

[15..0]:

Rx Order

GSC_SIO_PARITY The type of parity that will

be used on a single channel

of the SIO4 board.

[31..0]:

parity

value[0]:

parity

GSC_PARITY_NONE

GSC_PARITY_EVEN

GSC_PARITY_ODD

GSC_PARITY_MARK

GSC_PARITY_SPACE

GSC_SIO_STOPBITS The number of stop bits to

use for a single channel of

the SIO4 board.

[31..0]:

stopbits

value[0]:

stopbits

GSC_STOP_BITS_0

GSC_STOP_BITS_1

GSC_STOP_BITS_1_5

GSC_STOP_BITS_2

GSC_SIO_ENCODING The encoding type for a

single channel of the SIO4

board.

[31..0]

encoding

value[0]:

encoding

The macros defined in the section

“Channel Encoding Definitions”.

33

Option Name Description Set Value

Parameter

Format

Get Value

Parameter

Format

Valid Values

GSC_SIO_PROTOCOL The physical interface

protocol and termination

options. The protocol on the

standard SIO4B card is

fixed at RS422/RS485 or

RS232 depending on the

configuration set at the

factory.

Only the –BX cards allow

this value to be changed.

[31..16]:

protocol

[15..0]:

termination

value[0]:

protocol

value[1]:

termination

Protocol:

GSC_PROTOCOL_RS422_RS485

GSC_PROTOCOL_RS423

GSC_PROTOCOL_RS232

GSC_PROTOCOL_RS530_1

GSC_PROTOCOL_RS530_2

GSC_PROTOCOL_V35_1

GSC_PROTOCOL_V35_2

GSC_PROTOCOL_RS422_RS423_1

GSC_PROTOCOL_RS422_RS423_2

Termination:

GSC_TERMINATION_ENABLED

GSC_TERMINATION_DISABLED

GSC_SIO_DTEDCE Sets a single channel of the

SIO4 board to either DTE or

DCE mode. Each channel

defaults to DTE mode when

it is configured. Setting this

option is only necessary if

DCE mode is required, or to

switch back to DTE mode

after a previous change to

DCE mode. The pin-outs for

both DTE and DCE modes

are available in the

Hardware User Manual.

[31..0]:

mode

value[0]:

mode

GSC_PIN_DTE GSC_PIN_DCE

GSC_SIO_LOOPBACK The loopback mode of a

channel on the SIO4 board.

[31..0]

loop mode

value[0]:

loop mode

GSC_LOOP_NONE

GSC_LOOP_EXTERNAL

GSC_SIO_RECEIVER Used for enabling or

disabling the receiver for a

single channel on the SIO4

board..

[31..0]:

mode

value[0]:

mode

GSC_ENABLED GSC_DISABLED

GSC_SIO_TRANSMITTER Used for enabling or

disabling the transmitter for

a single channel on the

SIO4 board.

[31..0]:

mode

value[0]:

mode

GSC_ENABLED GSC_DISABLED

GSC_SIO_TXDATAPINMODE Used to enable the TxD pin

of a channel to be used for

general purpose i/o.

[31..0]:

mode

value[0]:

mode

GSC_PIN_AUTO GSC_PIN_GPIO

GSC_SIO_RXDATAPINMODE Used to enable the RxD pin

of a channel to be used for

general purpose i/o.

[31..0]:

mode

value[0]:

mode

GSC_PIN_AUTO GSC_PIN_GPIO

GSC_SIO_TXCLOCKPINMODE Used to enable the TxC pin

of a channel to be used for

general purpose i/o.

[31..0]:

mode

value[0]:

mode

GSC_PIN_AUTO GSC_PIN_GPIO

GSC_SIO_RXCLOCKPINMODE Used to enable the RxC pin

of a channel to be used for

general purpose i/o.

[31..0]:

mode

value[0]:

mode

GSC_PIN_AUTO GSC_PIN_GPIO

34

Option Name Description Set Value

Parameter

Format

Get Value

Parameter

Format

Valid Values

GSC_SIO_CTSPINMODE Used to enable the CTS pin

of a channel to be used for

general purpose i/o.

[31..0]:

mode

value[0]:

mode

GSC_PIN_AUTO GSC_PIN_GPIO

GSC_SIO_RTSPINMODE Used to enable the RTS pin

of a channel to be used for

general purpose i/o.

[31..0]:

mode

value[0]:

mode

GSC_PIN_AUTO GSC_PIN_GPIO

GSC_SIO_CLOCKSOURCE Used to set the clock pin

sources of the transmitter

and receiver. This option

provides for the transmitter

and receiver to be

configured with an internal

or an external clock source.
The AUX option is not

supported by SYNC boards.

[31..16]:

Tx source

N/A GSC_CLOCK_INTERNAL

GSC_CLOCK_EXTERNAL

GSC_CLOCK_EXT_RX_AUX

[15..0]:

Rx Source

GSC_SIO_CRCMODE Used for setting the CRC

generation/detection mode

for a single channel. This

routine is also used to set

the initial value of the CRC

register.

[31..16]

crc mode

[15..0]

crc initial

value

value[0]:

rc mode

crc mode: GSC_CRC_NONE

GSC_CRC_16 GSC_CRC_32

GSC_CRC_CCITT

initial value: GSC_CRC_INIT_0

GSC_CRC_INIT_1

value[1]:

crc initial

value

GSC_SIO_SYNCWORD Used to set the sync word

used on a channel.

[31..16]:

Tx sync

word

value[0]:

Tx sync

word

value[1]:

Rx sync

word

Integer value between 0..65535.

[15..0]:

Rx sync

word

GSC_SIO_TXUNDERRUN Sets the data pattern to be

transmitted under a Tx

underrun condition.

[31..0]:

Tx

Underrun

pattern

value[0]:

Tx

underrun

pattern

GSC_SYN1 GSC_SYN0_SYN1

GSC_CRC_SYN1

GSC_CRC_SYN0_SYN1

GSC_SIO_TXPREAMBLE Used to enable or disable

the Tx preamble for a

channel.

[31..0]:

preamble

state

value[0]:

preamble

state

GSC_ENABLED GSC_DISABLED

GSC_SIO_TXSHORTSYNC Used set the Tx sync length

(short or 8 bit) for a

channel.

[31..0]:

Tx sync

length

value[0]:

Tx sync

length

GSC_ENABLED GSC_DISABLED

GSC_SIO_RXSYNCSTRIP Set the Rx sync strip mode

for a channel.

[31..0]:

Rx sync

strip mode

value[0]:

Rx sync

strip mode

GSC_ENABLED GSC_DISABLED

GSC_SIO_RXSHORTSYNC Used to set the Rx sync

length (short or 8 bit) for a

channel.

[31..0]:

Rx short

sync length

value[0]:

Rx short

sync length

GSC_ENABLED GSC_DISABLED

35

Option Name Description Set Value

Parameter

Format

Get Value

Parameter

Format

Valid Values

GSC_SIO_TXPREAMBLELENGTH Used to set the Tx preamble

length for a channel

[31..0]:

Tx

preamble

length

value[0]:

Tx

preamble

length

GSC_PREAMBLE_8BITS

GSC_PREAMBLE_16BITS

GSC_PREAMBLE_32BITS

GSC_PREAMBLE_64BITS

GSC_SIO_TXPREAMBLEPATTERN Used to set the Tx preamble

pattern for a channel.

[31..0]:

Tx

preamble

pattern

value[0]:

Tx

preamble

value

GSC_PREAMBLE_ALL_0

GSC_PREAMBLE_ALL_1

GSC_PREAMBLE_ALL_0_1

GSC_PREAMBLE_ALL_1_0

GSC_SIO_ORDERING Used to set the byte and bit

order used in bisync16

mode on a channel.

[31..16]:

byte order

[15..0]

bit order

value[0]:

byte order

byte and bit order:

GSC_MSB_FIRST

GSC_LSB_FIRST
value[1]: bit

order

GSC_SIO_MAXRXCOUNT Used to set the maximum

Rx count allowed

[31..0]:

Max Rx

Count

value[0]:

Max Rx

count

Integer value

36

GscSio4ChannelSetPinMode / GscSio4ChannelGetPinMode

GscSio4ChannelSetPinMode(…) configures the specified pin for general purpose

I/O. The function can also set the specified pin for normal use.

Supported Hardware:

All

Prototype:

int GscSio4ChannelSetPinMode (

int boardNumber,

int channel,

int pinName,

int mode);

int GscSio4ChannelGetPinMode (

Parameters:

int boardNumber,

int channel,

int pinName,

int *mode);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

pinName – Identifier for the pin to be configured.

mode – The desired/current mode of operation for the specified pin. Valid values are

defined in the GSC_TOKENS enumeration as follows:

GSC_PIN_AUTO

GSC_PIN_GPIO

37

GscSio4ChannelSetPinValue / GscSio4ChannelGetPinValue

GscSio4ChannelSetPinValue(…) sets the current value of the specified

programmable PIN if it is configured as GPIO.

Supported Hardware:

All

Prototype:

int GscSio4ChannelSetPinValue (

int boardNumber,

int channel,

int pinName,

int value);

int GscSio4ChannelGetPinValue (

Parameters:

int boardNumber,

int channel,

int pinName,

int *value);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

pinName - Identifier for the pin to be configured.

value – The desired/current value of the specified pin. Accepted values are 0 and 1.

38

GscSio4ChannelFifoSizes

GscSio4ChannelFifoSizes(…) returns the size, in bytes, of the channel’s Transmit

and Receive FIFOs. The size of the Receive FIFO is returned in the upper 16 bits and the

size of the Transmit FIFO is returned in the lower 16 bits of the result (sizes).

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelFifoSizes(

Parameters:

int boardNumber,

int channel,

int *sizes);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

sizes – A pointer to the location that will receive the size (in bytes) of the Receive (upper

16 bits) and the Transmit (lower 16 bits) FIFOs

39

GscSio4ChannelFifoCounts

GscSio4ChannelFifoCounts(…) returns the current number of bytes in the channel’s

Transmit and Receive FIFOs. The number of bytes in the Receive FIFO are returned in

the upper 16 bits and the number of bytes in the Transmit FIFO are returned in the lower

16 bits of the result (counts).

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelFifoCounts(

Parameters:

int boardNumber,

int channel,

int *counts);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

counts – A pointer to the location that will receive the number of bytes currently in the

Receive (upper 16 bits) and the Transmit (lower 16 bits) FIFOs.

40

GscSio4ChannelSetTxAlmost / GscSio4ChannelGetTxAlmost

GscSio4ChannelSetTxAlmost(…) programs the “Almost Full” and “Almost Empty”

registers in the Transmit FIFO for a single channel. Once the values are programmed, the

FIFO will be reset to force the change to take effect. This will also clear the contents of

the FIFO, so this command should be done before any data transfers occur.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelSetTxAlmost(

Parameters:

int boardNumber,

int channel,

int almostValue);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

almostValue – The 32bit value that will be programmed into the Transmitter FIFO’s

Almost Full (upper 16 bits) and Almost Empty (lower 16 bits) registers.

41

GscSio4ChannelSetRxAlmost / GscSio4ChannelGetRxAlmost

GscSio4ChannelSetRxAlmost(…) programs the “Almost Full” and “Almost Empty”

registers in the Receive FIFO for a single channel. Once the values are programmed, the

FIFO will be reset to force the change to take effect. This will also clear the contents of

the FIFO, so this command should be done before any data transfers occur.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4ChannelSetRxAlmost(

Parameters:

int boardNumber,

int channel,

int almostValue);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

almostValue – The 32bit value that will be programmed into the Receiver FIFO’s Almost

Full (upper 16 bits) and Almost Empty (lower 16 bits) registers.

42

GscSio4ChannelCheckForData

GscSio4ChannelCheckForData(…) determines whether a packet has been received on

the specified channel. If a packet has been received, a dma transfer is initiated to return

the data. The data received on the channel is transferred into the memory buffer pointed

to by buffer. A number of bytes transferred is indicated by the value of count. This

function may return before the transfer completes.

Supported Hardware:

All

Prototype:

int GscSio4ChannelCheckForData(

int boardNumber,

int channel,

char *buffer,

int *count);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

buffer – A pointer to the start of the data buffer that will receive the data. The buffer

should be large enough to hold a packet of data.

count – The number of bytes transferred.

43

GscSio4ChannelReceivePacket

GscSio4ChannelReceivePacket(…) determines whether a packet has been received

on the specified channel. If a packet has been received, a dma transfer is initiated to

return the data. The data received on the channel is transferred into the memory buffer

pointed to by buffer. A number of bytes transferred is indicated by the value of count.

This function may return before the transfer completes.

Supported Hardware:

All

Prototype:

int GscSio4ChannelReceivePacket(

int boardNumber,

int channel,

char *buffer,

int *count,

int *transferStatus);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

buffer – A pointer to the start of the data buffer that will receive the data. The buffer

should be large enough to hold a packet of data.

count – The number of bytes that are to be transferred. Must be set to this value prior to

making the function call.

transferStatus – Indicates the status of the transfer. The value will be non-zero if there are

errors, such as a CRC error or an abort error, with the transfer. The status returned in

this parameter will be a mask of any error bits in the UART RCSR register.

Otherwise the value will be zero.

44

GscSio4ChannelReceiveData

GscSio4ChannelReceiveData(…) starts the reception of data on the specified channel.

The data received on the channel is transferred into the memory buffer pointed to by

buffer. A total of count bytes will be transferred. This function may return before the

transfer completes. When this function returns, the value pointed to by id will contain a

unique identifier that can be used to determine the progress of the transfer.

Supported Hardware:

All

Prototype:

int GscSio4ChannelReceiveData(

Parameters:

int boardNumber,

int channel,

char *buffer,

int count,

int *id);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

buffer – A pointer to the start of the data buffer that will receive the data. The buffer

should be at least count bytes long.

count – The number of bytes to transfer.

id – A pointer to the location that will hold the unique transfer identifier that is assigned

to this transfer. This value can be used to determine when the transfer has completed.

45

GscSio4ChannelReceiveDataAndWait

GscSio4ChannelReceiveDataAndWait(…) starts the reception of data on the

specified channel. The data received on the channel is transferred into the memory buffer

pointed to by buffer. A total of count bytes will be transferred. This function will not

return until the entire transfer has completed or the timeout period has expired. If a

timeout occurs, the value in bytesTransferred will specify the number of bytes that were

actually received. (Note that if no timeout occurs, the bytesTransferred value is

undefined.)

Supported Hardware:

All

Prototype:

int GscSio4ChannelReceiveDataAndWait(

int boardNumber,

int channel,

char *buffer,

int count,

int timeout,

int *bytesTransferred);

Return value:

The function returns a zero if the packet transfer completes. Otherwise it returns a

non-zero error code.

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

buffer – A pointer to the start of the data buffer that will receive the data. The buffer

should be at least count bytes long.

count – The number of bytes to transfer.

timeout – The desired timeout period (in milliseconds) for the transfer.

bytesTransferred – If a timeout occurs, this value will specify the total number of bytes

that were actually received. If no timeout occurs, this value is undefined.

46

GscSio4ChannelReceivePlxPhysData

GscSio4ChannelReceivePlxPhysData(…) starts the reception of data on the specified

channel. The data received on the channel is transferred into the physically contiguous

memory buffer pointed to by buffer. The memory for this buffer must be allocated with

the GscAllocPhysicalMemory function and mapped into user virtual space using the

GscMapPhysicalMemory function. A total of count bytes will be transferred. This

function may return before the transfer completes. When this function returns, the value

pointed to by id will contain a unique identifier that can be used to determine the progress

of the transfer.

Supported Hardware:

All

Prototype:

int GscSio4ChannelReceivePlxPhysData(

int boardNumber,

int channel,

PLX_PHYSICAL_MEM *buffer,

int count,

int *id);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

buffer – A pointer to the start of the physically contiguous data buffer that will receive the

data. The buffer should be at least count bytes long.

count – The number of bytes to transfer.

id – A pointer to the location that will hold the unique transfer identifier that is assigned

to this transfer. This value can be used to determine when the transfer has completed.

47

GscSio4ChannelTransmitData

GscSio4ChannelTransmitData(…) starts the transmission of data on the specified

channel. The data to be transmitted on the channel is transferred from the memory buffer

pointed to by buffer. A total of count bytes will be transferred. This function may return

before the transfer completes. When this function returns, the value pointed to by id will

contain a unique identifier that can be used to determine the progress of the transfer.

Supported Hardware:

All

Prototype:

int GscSio4ChannelTransmitData(

Parameters:

int boardNumber,

int channel,

char *buffer,

int count,

int *id);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

buffer – A pointer to the start of the data buffer that will be transmitted. The buffer should

be at least count bytes long.

count – The number of bytes to transfer.

id – A pointer to the location that will hold the unique transfer identifier that is assigned

to this transfer. This value can be used to determine when the transfer has completed.

48

GscSio4ChannelTransmitDataAndWait

GscSio4ChannelTransmitDataAndWait(…) starts the transmission of data on the

specified channel. The data to be transmitted on the channel is transferred from the

memory buffer pointed to by buffer. A total of count bytes will be transferred. This

function will not return until the entire transfer has completed or the timeout period has

expired. If a timeout occurs, the value in bytesTransferred will specify the number of

bytes that were actually transmitted. (Note that if no timeout occurs, the bytesTransferred

value is undefined.)

Supported Hardware:

All

Prototype:

int GscSio4ChannelTransmitDataAndWait(

int boardNumber,

int channel,

char *buffer,

int count,

int timeout

int *bytesTransferred);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

buffer – A pointer to the start of the data buffer that will be transmitted. The buffer should

be at least count bytes long.

count – The number of bytes to transfer.

timeout – The desired timeout period (in milliseconds) for the transfer.

bytesTransferred – If a timeout occurs, this value will specify the total number of bytes

that were actually transmitted. If no timeout occurs, this value is undefined.

49

GscSio4ChannelTransmitPlxPhysData

GscSio4ChannelTransmitPlxPhysData(…) starts the transmission of data on the

specified channel. The data to be transmitted on the channel is transferred from the

physically contiguous memory buffer pointed to by buffer. This buffer must be allocated

using the GscAllocPhysicalMemory function and mapped to user virtual space using the

GscMapPhysicalMemory function. A total of count bytes will be transferred. This

function may return before the transfer completes. When this function returns, the value

pointed to by id will contain a unique identifier that can be used to determine the progress

of the transfer.

Supported Hardware:

All

Prototype:

int GscSio4ChannelTransmitPlxPhysData(

int boardNumber,

int channel,

PLX_PHYSICAL_MEM *buffer,

int count,

int *id);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

buffer – A pointer to the start of the physically contiguous data buffer that will be

transmitted. The buffer should be at least count bytes long.

count – The number of bytes to transfer.

id – A pointer to the location that will hold the unique transfer identifier that is assigned

to this transfer. This value can be used to determine when the transfer has completed.

50

GscSio4ChannelQueryTransfer

GscSio4ChannelQueryTransfer(…) is used to determine the status of a transfer that

was initiated by a call to either GscSio4ChannelReceiveData (…) or

GscSio4ChannelTransmitData (…). The result is returned in stat and will be 0 if the

transfer has completed or non-zero if it has not completed.

Supported Hardware:

All

Prototype:

int GscSio4ChannelQueryTransfer(

Parameters:

int boardNumber,

int channel,

int *stat,

int id);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

stat – A pointer to the location that will hold the returned status of the transfer. The stat

will be 0 if the transfer has completed. Otherwise, it will hold the number of bytes left

to transfer.

id – The unique ID that was assigned to the transfer by the call to either

GscSio4ChannelReceiveData(…) or GscSio4ChannelTransmitData(…)

51

GscSio4ChannelWaitForTransfer

GscSio4ChannelWaitForTransfer (…) is used to wait for the completion of a transfer

that was initiated by a call to either GscSio4ChannelReceiveData (…) or

GscSio4ChannelTransmitData (…). The routine will return when either the transfer

completes or the timeout period expires. If the timeout period expires, the

bytesTransferred parameter will be updated with the number of bytes that were

successfully transferred. If the transfer completes, or another type of error occurs, the

bytesTransferred parameter will be -1.

Supported Hardware:

All

Prototype:

int GscSio4ChannelWaitForTransfer(

Parameters:

int boardNumber,

int channel,

int timeout,

int id,

int *bytesTransferred);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

timeout – The desired amount of time in milliseconds that the routine will wait for the

transfer to complete.

id – The unique ID that was assigned to the transfer by the call to either

GscSio4ChannelReceiveData(…) or GscSio4ChannelTransmitData(…)

bytesTransferred - A pointer to the location that will hold the number of bytes that were

actually transferred if the timeout period expires. This value will be -1 if the transfer

completes or an error occurs.

52

GscSio4ChannelFlushTransfer

GscSio4ChannelFlushTransfer (…) is used to force any data that is in the Rx FIFO to

be transferred via DMA to memory. For a Tx channel, data is transferred to the Tx FIFO

until it is full. Calling this routine is only necessary when a transfer did not complete on

its own, or when aborting a transfer that has not completed.

Supported Hardware:

All

Prototype:

int GscSio4ChannelFlushTransfer(

Parameters:

int boardNumber,

int channel,

int id);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

id – The unique ID that was assigned to the transfer by the call to either

GscSio4ChannelReceiveData(…) or GscSio4ChannelTransmitData(…)

53

GscSio4ChannelRemoveTransfer

GscSio4ChannelRemoveTransfer (…) is used to remove a pending transfer from the

transfer queue. Calling this routine is only necessary when a transfer did not complete on

its own, or when aborting a transfer that has not completed. If a transfer ID of -1 is passed

to the routine, all pending transfers will be removed.

Supported Hardware:

All

Prototype:

int GscSio4ChannelRemoveTransfer(

Parameters:

int boardNumber,

int channel,

int id,

int *bytesTransferred);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

id – The unique ID that was assigned to the transfer by the call to either

GscSio4ChannelReceiveData(…) or GscSio4ChannelTransmitData(…)

bytesTransferred - A pointer to the location that will hold the number of bytes that were

actually transferred before the call to GscSio4ChannelRemoveTransfer (). This value

will be -1 if the transfer had already completed or an error occurs.

54

GscFindBoardsGscSio4ChannelRegisterInterrupt

GscSio4ChannelRegisterInterrupt (…) is used register a callback routine with the

interrupt handler. There are several interrupt sources associated with each interrupt. This

routine allows any or all of the interrupt sources to be associated with a callback function.

The callback function can be shared between interrupt sources or a different callback can

be used for each source. This routine also determines whether the interrupt occurs on the

Rising Edge (High True) or Falling Edge (Low True).

Supported Hardware:

All

Prototype:

int GscSio4ChannelRegisterInterrupt(

Parameters:

int boardNumber,

int channel,

int interrupt,

int type,

GSC_CB_FUNCTION *function);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

interrupt – This value determines which interrupts are associated with the provided

callback function. This value should be the logical OR of one or more of the

following:

GSC_INTR_SYNC_DETECT – Triggers an interrupt when the SYNC byte is

received on the channel. (This source is not available on the –Sync boards)

GSC_INTR_USC – Triggers an interrupt when the on board USC has an interrupt

pending. Refer to the USC data sheet for details of its possible interrupt

sources. (This source is not available on the –Sync boards)

GSC_INTR_TX_FIFO_EMPTY – Triggers an interrupt when the Transmit FIFO

for the channel is empty.

GSC_INTR_TX_FIFO_FULL – Triggers an interrupt when the Transmit FIFO

for the channel is full.

GSC_INTR_TX_FIFO_ALMOST_EMPTY – Triggers an interrupt when the

Transmit FIFO for the channel is almost empty. The level at which this

55

interrupt will occur is set by calling the GscSio4ChannelSetTxAlmost(…)

routine.

GSC_INTR_RX_FIFO_EMPTY – Triggers an interrupt when the Receive FIFO

for the channel is empty.

GSC_INTR_RX_FIFO_FULL – Triggers an interrupt when the Receive FIFO for

the channel is full.

GSC_INTR_RX_FIFO_ALMOST_FULL – Triggers an interrupt when the

Receive FIFO for the channel is almost full. The level at which this

interrupt will occur is set by calling the GscSio4ChannelSetRxAlmost(…)

routine.

GSC_INTR_RX_ENVELOPE – Triggers an interrupt when the RX Envelope

signal changes. (This source is only available on the –Sync boards)

type – This value determines whether the interrupt occurs on the rising of falling edge. It

should be one of the following:

GSC_RISING_EDGE – The interrupt will occur on the rising edge of the

interrupt signal (i.e. when the condition becomes true.)

GSC_FALLING_EDGE – The interrupt will occur on the falling edge of the

interrupt signal (i.e. when the condition becomes not true.)

function – This is the address of the interrupt callback function. If this value is set to

NULL, the callback for the current “interrupt” parameter will be cleared, otherwise

this routine will be called for each of the conditions specified in the “interrupt”

parameter. The prototype for the callback function is:

void CALLBACK callback_function(

int boardNumber,

int channel,

int interrupt);

The parameters to the callback specify the board and channel number on which the

interrupt occurred as well as the source of the interrupt (as defined above.) If multiple

interrupt sources are mapped to the same callback routine, the “interrupt” parameter

can be used to determine the source of the interrupt.

56

GscSio4ChannelSetClock

GscSio4ChannelSetClock(…) is used to set the serial bit rate (baud rate) for a specific

channel. Under normal conditions, this routine will not be used since the

GscSio4ChannelSetMode(…) function sets the bit rate of the channel when the channel’s

mode is set. This function is provided to allow the bit rate to be changed without re-

configuring the channel.

Supported Hardware:

All

Prototype:

int GscSio4ChannelSetClock(

Parameters:

int boardNumber,

int channel,

int frequency);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

frequency – The desired bit rate for this channel. This value is specified in Hz and can

range from 100 to 10000000 (1000000 for async channels).

57

Protocol Level Routines

The Protocol Level Routines perform functions that apply to a specific protocol on a

single channel on an SIO4 board. Each of these routines requires the board number

(boardNumber) as the first parameter and the channel number (channel) as the second

parameter. The board number corresponds to the results of the GscFindBoards(…)

function. Note that this number will always be 1 in a single board system. The channel

number will always be 1, 2, 3, or 4.

These routines can be called at any time. All of these functions return zero if

successful or a non-zero error code if a failure occurs.

GscSio4HdlcGetDefaults

GscSio4HdlcGetDefaults(…) returns the default HDLC configuration structure.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4HdlcGetDefaults(

PGSC_HDLC_CONFIG config);

Parameters:

config – A pointer to a configuration structure that will be filled in with default

configuration values.

58

GscSio4HdlcSetConfig / GscSio4HdlcGetConfig

GscSio4HdlcSetConfig(…) sets the mode of the specified channel to HDLC and sets

the current configuration to the values specified in the config parameter.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4HdlcSetConfig(

int boardNumber,

int channel,

GSC_HDLC_CONFIG config);

int GscSio4HdlcGetConfig(

Parameters:

int boardNumber,

int channel,

PGSC_HDLC_CONFIG config);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

config – The desired/current configuration structure for the channel.

59

GscSio4AsyncGetDefaults

GscSio4AsyncGetDefaults(…) returns the default Async configuration structure.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4AsyncGetDefaults(

PGSC_ASYNC_CONFIG config);

Parameters:

config – A pointer to a configuration structure that will be filled in with default

configuration values.

60

GscSio4AsyncSetConfig / GscSio4AsyncGetConfig

GscSio4AsyncSetConfig(…) sets the mode of the specified channel to Async and sets

the current configuration to the values specified in the config parameter.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4AsyncSetConfig(

int boardNumber,

int channel,

GSC_ASYNC_CONFIG config);

int GscSio4AsyncGetConfig(

Parameters:

int boardNumber,

int channel,

PGSC_ASYNC_CONFIG config);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

config – The desired/current configuration structure for the channel.

61

GscSio4BiSyncGetDefaults

GscSio4BiSyncGetDefaults(…) returns the default BiSync configuration structure.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4BiSyncGetDefaults(

PGSC_BISYNC_CONFIG config);

Parameters:

config – A pointer to a configuration structure that will be filled in with default

configuration values.

62

GscSio4BiSyncSetConfig / GscSio4BiSyncGetConfig

GscSio4BiSyncSetConfig(…) sets the mode of the specified channel to bisync and

sets the current configuration to the values specified in the config parameter.

Supported Hardware:

PCI-SIO4B

Prototype:

int GscSio4BiSyncSetConfig(

int boardNumber,

int channel,

GSC_BISYNC_CONFIG config);

int GscSio4BiSyncGetConfig(

Parameters:

int boardNumber,

int channel,

PGSC_BISYNC_CONFIG config);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

config – The desired/current configuration structure for the channel.

63

GscSio4SyncGetDefaults

GscSio4SyncGetDefaults(…) returns the default Sync configuration structure.

Supported Hardware:

PCI-SIO4B-SYNC

Prototype:

int GscSio4SyncGetDefaults(

PGSC_SYNC_CONFIG config);

Parameters:

config – A pointer to a configuration structure that will be filled in with default

configuration values.

64

GscSio4SyncSetConfig / GscSio4SyncGetConfig

GscSio4SyncSetConfig(…) sets the mode of the specified channel to Sync and sets

the current configuration to the values specified in the config parameter.

Supported Hardware:

PCI-SIO4B-SYNC

Prototype:

int GscSio4SyncSetConfig(

int boardNumber,

int channel,

GSC_SYNC_CONFIG config);

int GscSio4SyncGetConfig(

Parameters:

int boardNumber,

int channel,

PGSC_SYNC_CONFIG config);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

config – The desired/current configuration structure for the channel.

65

GscSio4BiSync16GetDefaults

GscSio4BiSync16GetDefaults(…) returns the default bisync16 configuration

structure.

Supported Hardware:

PCI-SIO4B-BISYNC

Prototype:

int GscSio4BiSync16GetDefaults(

PGSC_BISYNC16_CONFIG config);

Parameters:

config – A pointer to a configuration structure that will be filled in with default

configuration values.

66

GscSio4BiSync16SetConfig / GscSio4BiSync16GetConfig

GscSio4BiSync16SetConfig(…) sets the mode of the specified channel to bisync16

and sets the current configuration to the values specified in the config parameter.

Supported Hardware:

PCI-SIO4B-BISYNC

Prototype:

int GscSio4BiSync16SetConfig(

int boardNumber,

int channel,

GSC_BISYNC16_CONFIG config);

int GscSio4BiSync16GetConfig(

Parameters:

int boardNumber,

int channel,

PGSC_BISYNC16_CONFIG config);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

config – The desired/current configuration structure for the channel.

67

GscSio4BiSync16GetTxCounts

GscSio4BiSync16GetTxCounts(…) is used to retrieve the initial and remaining Tx

counts for a channel configured in bisync16 mode.

Supported Hardware:

PCI-SIO4B-BISYNC

Prototype:

int GscSio4BiSync16GetTxCounts(

Parameters:

int boardNumber,

int channel,

int *remaining,

int *initial);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

remaining – The remaining Tx counts value.

initial – The initial Tx Counts value.

68

GscSio4BiSync16GetRxCounts

GscSio4BiSync16GetRxCounts(…) is used to retrieve the initial and remaining Rx

counts for a channel configured in bisync16 mode.

Supported Hardware:

PCI-SIO4B-BISYNC

Prototype:

int GscSio4BiSync16GetRxCounts(

Parameters:

int boardNumber,

int channel,

int *remaining,

int *initial);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

remaining – The remaining Rx counts value.

initial – The initial Rx Counts value.

69

GscSio4BiSync16EnterHuntMode

GscSio4BiSync16EnterHuntMode(…) is used to cause a channel configured in

bisync16 mode to enter hunt mode.

Supported Hardware:

PCI-SIO4B-BISYNC16??

Prototype:

int GscSio4BiSync16EnterHuntMode(

Parameters:

int boardNumber,

int channel)

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

70

GscSio4BiSync16AbortTx

GscSio4BiSync16AbortTx(…) is used to cause a channel configured in bisync16

mode to abort the current transmission.

Supported Hardware:

PCI-SIO4B-BISYNC16??

Prototype:

int GscSio4BiSync16AbortTx(

Parameters:

int boardNumber,

int channel)

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

71

GscSio4BiSync16Pause

GscSio4BiSync16Pause(…) is used to cause a channel configured in bisync16 mode

to pause the current transmission.

Supported Hardware:

PCI-SIO4B-BISYNC16??

Prototype:

int GscSio4BiSync16Pause(

Parameters:

int boardNumber,

int channel)

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

72

GscSio4BiSync16Resume

GscSio4BiSync16Resume(…) is used to cause a channel configured in bisync16

mode to pause the current transmission.

Supported Hardware:

PCI-SIO4B-BISYNC16??

Prototype:

int GscSio4BiSync16Resume(

Parameters:

int boardNumber,

int channel)

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

73

CTC Protocol Routines

GscSio4CTCAddMajorFrame

GscSio4CTCAddMajorFrame(…) adds a CTC major frame to the TX SRAM for the

specified channel.

Supported Hardware:

SIO4BXR

Prototype:

int GscSio4CTCAddMajorFrame(

Parameters:

int boardNumber,

int channel,

CTC_MAJOR_FRAME *frame,

int framesize);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

frame – A pointer to the start of the CTC major frame that will be transmitted.

framesize – The major frame size expressed as the number of minor frames

74

GscSio4CTCAddMinorFrame

GscSio4CTCAddMinorFrame(…) adds a CTC minor frame to the TX SRAM for the

specified channel.

Supported Hardware:

SIO4BXR

Prototype:

int GscSio4CTCAddMinorFrame(

Parameters:

int boardNumber,

int channel,

CTC_MINOR_FRAME *frame);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

frame – A pointer to the CTC minor frame that will be written to TX SRAM.

75

GscSio4CTCGetActiveMajorFrame

GscSio4CTCGetActiveMajorFrame(…) returns the frame number of the CTC major

frame actively being transmitted.

Supported Hardware:

SIO4BXR

Prototype:

int GscSio4CTCGetActiveMajorFrame(

Parameters:

int boardNumber,

int channel,

int *frameNumber);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

*frameNumber – A pointer to the returned active major frame number

76

GscSio4CTCGetConfig

GscSio4GetActiveMajorFrame(…) returns the current configuration structure for a

single channel that is set to CTC mode.

Supported Hardware:

SIO4BXR

Prototype:

int GscSio4CTCGetConfig(

Parameters:

int boardNumber,

int channel,

PGSC_CTC_CONFIG config);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

config – A pointer to the board configuration structure. The details of this structure are

documented in the section “CTC Data Structures”

77

GscSio4CTCGetDefaults

GscSio4CTCGetDefaults(…) returns the default CTC configuration structure.

Supported Hardware:

SIO4BXR

Prototype:

int GscSio4CTCGetDefaults(

PGSC_CTC_CONFIG config);

Parameters:

config – A pointer to a configuration structure that will be filled in with default

configuration values.

78

GscSio4CTCReceiveFrames

GscSio4CTCReceiveFrames(…) returns the frame number of the CTC major frame

actively being transmitted.

Supported Hardware:

SIO4BXR

Prototype:

int GscSio4CTCReceiveFRames(

Parameters:

int boardNumber,

int channel,

int *nFrames,

char *buffer,

int *nErrors);

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

*nFrames – On input, this parameter specifies the maximum number of frames to

retrieve. On output, the actual number of frames retrieved is returned.

*buffer – The minor frames received are returned in this parameter.

*nErrors – The count of errors associated with frames in the FIFO.

79

GscSio4CTCResetTimer

GscSio4CTCResetTimer(…) resets the CTC timer value.

Supported Hardware:

SIO4BXR

Prototype:

int GscSio4CTCResetTimer(

int boardNumber);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

80

GscSio4CTCSetConfig

GscSio4CTCSetConfig(…) sets the current configuration structure for a single CTC

channel. The details of the configuration structure are documented in the section “CTC

Data Structures”.

Supported Hardware:

SIO4BXR

Prototype:

int GscSio4CTCSetConfig(

int boardNumber,

int channel,

GSC_CTC_CONFIG config);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

config – The board configuration structure populated with the desired settings for the

CTC board.

81

GscSio4CTCSetTimer

GscSio4CTCSetTimer(…) sets the CTC timer BCD or binary value.

Supported Hardware:

SIO4BXR

Prototype:

int GscSio4CTCSetTimer(

int boardNumber,

unsigned short usecs,

unsigned int hilo

int timerMode);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

usecs – Value for the CTC timer usec register

hilo – Value for the CTC timer hilo register

timerMode – BCD or binary.

82

GscSio4CTCSwitchMajorFrame

GscSio4CTCSwitchMajorFrame(…) adds a CTC major frame to TX SRAM for the

specified channel and hands off active CTC transmission to the added major frame,

causing the previously transmitting major frame to go dormant.

Supported Hardware:

SIO4BXR

Prototype:

int GscSio4CTCSwitchMajorFrame(

int boardNumber,

int channel,

CTC_MAJOR_FRAME *frame

int frameSize);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

*frame – A pointer to the new major frame to start transmitting

frameSize – The major frame size expressed as the number of minor frames contained in

the major frame.

83

GscSio4CTCTransmitFrames

GscSio4CTCTransmitFrames(…) transmits a loop of CTC minor frames on the

specified channel.

Supported Hardware:

SIO4BXR

Prototype:

int GscSio4CTCTransmitFrames(

int boardNumber,

int channel,

int frameNumber);

Parameters:

boardNumber – The number of the desired board. This number corresponds to the results

of the GscFindBoards(…) function. Note that this number will always be 1 in a single

board system.

channel – The desired channel number. This number will be 1, 2, 3, or 4.

frameNumber – The starting minor frame number of the loop.

84

CTC Data Structures and Macro Definitions

GSC_CTC_CONFIG Structure

typedef struct _GSC_CTC_CONFIG

{

// Channel Configuration Variables

int bitRate; // Bit rate for the channel.

int protocol; // Bus Protocol - RS485, RS232, etc.

int termination; // Termination Resistors enabled/disabled

int majorFrameSize; // Maximum number of minor frames

// allowable in a major frame

int minorFrameSize; // Minor frame size in bytes.

int timerMode; // Binary or BCD

int timerValue; // 32-bit binary or bcd timer value

// Transmitter Configuration Variables

int txStatus; // Transmitter Enabled/Disabled

int txFrameCount; // Enable/disable inclusion of frame

// count in tx frame.

int txFrameTimer; // Enable/disable inclusion of timestamp

// in tx frame.

// Receiver Configuration Variables

int rxStatus; // Receiver Enabled/Disabled

int rx; // Clock source for the receiver

// Pin Configuration Variables

int interfaceMode; // DTE or DCE interface

int loopbackMode; // None, internal, or external loop back

} GSC_CTC_CONFIG, *PGSC_CTC_CONFIG;

CTC_MINOR_FRAME Structure

typedef struct _CTC_MINOR_FRAME

{

int frameNumber;

int lastFrame;

int framingErrEnable;

int timerInsertEnable;

int frameCountInsertEnable;

int nextFrame;

int size;

char *data;

} CTC_MINOR_FRAME;

85

CTC_MAJOR_FRAME Structure

typedef struct _CTC_MAJOR_FRAME

{

int majorFrameNumber;

CTC_MINOR_FRAME frames[256];

} CTC_MAJOR_FRAME;

CTC Local Registers

Macro Value
CTC_TIMER_CONTROL_REG 0x0800

CTC_TIMER_HILO_REG 0x0804

CTC_TIMER_USEC_REG 0x0808

CTC_CONTROL_REG 0x0000

CTC_FRAME_SIZE_REG 0x0018

CTC_TX_FRAME_START_REG 0x001c

CTC_TX_HEADER_OFFSET_REG 0x0030

CTC_TX_HEADER_DATA_REG 0x0034

CTC_TX_BUFFER_OFFSET_REG 0x0038

CTC_TX_BUFFER_DATA_REG 0x003c

CTC_TX_HEADER_CURRENT_REG 0x0040

CTC_TX_MAX_FRAMESIZE_REG 0x0044

CTC_RX_HEADER_FIFOCOUNT_REG 0x0058

CTC_RX_FRAME_FIFOCOUNT_REG 0x005c

CTC_RX_FRAME_ERRORCOUNT_REG 0x0060

CTC_TEST_REG 0x0810

CTC Interrupt Definitions

GSC_INTR_CTC_RX_FIFO_OVF 0x0001

GSC_INTR_CTC_RX_FRAME_RECV 0x0002

GSC_INTR_CTC_RX_FRAME_ERR 0x0010

GSC_INTR_CTC_RX_HEADER_OVFLOW 0x0020

Structures and Macro Definitions

This section contains the descriptions of the various structures and macro definitions

available to users of the API.

Devices Structure

86

typedef struct

{

int busNumber; // Identifies the bus that contains the board

int slotNumber; // Identifies the slot that contains the board

int vendorId; // Identifies the board Vendor

int deviceId; // Identifies the device

char serialNumber[25]; // A unique board serial number

} GSC_DEVICES_STRUCT;

Interrupt Callback Prototype

typedef void

((CALLBACK *GSC_CB_FUNCTION)(int boardNumber, int channel, int interrupt));

For the Linux platform, the macro CALLBACK is null. On the Win32 platform, this

macro declares the function calling convention as stdcall, which is required by

Microsoft .Net 2003 applications.

87

Channel Mode Definitions

The Channel Mode Definitions are used to set the current operating protocol for each

channel of the SIO4 board. These definitions are passed as a parameter of the

GscSio4ChannelSetMode(…) command.

Macro Protocol Defaults
GSC_MODE_ASYNC Asynchronous Mode 8 Data Bits

No Parity

1 Stop Bit

16x Clock

NRZ Encoding

GSC_MODE_HDLC HDLC/SDLC Mode 8 Data Bits

NRZ Encoding

GSC_MODE_SYNC Synchronous Mode* 8 Data Bits

0 Gap Bits

NRZ Encoding

GSC_MODE_SYNC_ENV Synchronous Mode w/ Envelope* 8 Data Bits

0 Gap Bits

NRZ Encoding

GSC_MODE_ISO Isochronous Mode 8 Data Bits

NRZ Encoding

GSC_MODE_MONOSYNC Monosync Mode 8 Data Bits

NRZ Encoding

GSC_MODE_BISYNC BiSync Mode 8 Data Bits

NRZ Encoding

GSC_MODE_TRANS_BISYNC Transparent BiSync Mode 8 Data Bits

NRZ Encoding

GSC_MODE_802_3 IEEE 802.3 Ethernet Mode 8 Data Bits

NRZ Encoding

* These are the only modes that are available on the –SYNC card. They are not available

on the standard card.

88

Channel Mode Configuration Structures

The Channel Mode Configuration structures are used by the GscApi mode

configuration functions that correspond with each mode. For example, the structure

GSC_HDLC_CONFIG is used by the GscApi configuration functions as follows:

GSC_HDLC_CONFIG cfg; // declare a configuration variable

GscSio4HdlcGetDefaults(&cfg); // get the default settings for Hdlc

mode

GscSio4HdlcSetConfig(board, channel, cfg); // configure a channel in Hdlc mode

GscSio4HdlcGetConfig(board, channel, &cfg); // retrieve current configuration

The GSC_HDLC_CONFIG structure definition, along with the structures corresponding

to the Async, BiSync, Sync and BiSync16 modes are listed below.

GSC_ASYNC_CONFIG Structure

typedef struct _GSC_ASYNC_CONFIG

{

// Channel Configuration Variables

int bitRate; // Baud rate for the channel.

int encoding; // Encoding - NRZ, BiPhase, etc.

int protocol; // Bus Protocol - RS485, RS232, V.35, etc.

int termination; // Termination Resistors enabled/disabled

int parity; // Parity mode - None, Even, Odd, etc.

int stopBits; // Stop bits - 0, 1, 1.5, 2

// Transmitter Configuration Variables

int txStatus; // Transmitter Enabled/Disabled

int txCharacterLength; // Bits per Tx character

int txClockSource; // Clock source for the transmitter

// Receiver Configuration Variables

int rxStatus; // Receiver Enabled/Disabled

int rxCharacterLength; // Bits per Rx character

int rxClockSource; // Clock source for the receiver

// Pin Configuration Variables

int interfaceMode; // DTE or DCE interface

int txDataPinMode; // Auto (system use) or GPIO

int rxDataPinMode; // Auto (system use) or GPIO

int txClockPinMode; // Auto (system use) or GPIO

int rxClockPinMode; // Auto (system use) or GPIO

int ctsPinMode; // Auto (system use) or GPIO

int rtsPinMode; // Auto (system use) or GPIO

int loopbackMode; // None, internal, or external loop back

} GSC_ASYNC_CONFIG, *PGSC_ASYNC_CONFIG;

89

GSC_HDLC_CONFIG Structure

typedef struct _GSC_HDLC_CONFIG

{

// Channel Configuration Variables

int bitRate; // Baud rate for the channel.

int encoding; // Encoding - NRZ, BiPhase, etc.

int protocol; // Bus Protocol - RS485, RS232, V.35, etc.

int termination; // Termination Resistors enabled/disabled

int parity; // Parity mode - None, Even, Odd, etc.

int crcMode; // CRC Type - Disabled, CCITT, etc.

int crcInitialValue; // Initial CRC - All 1 or 0

// Transmitter Configuration Variables

int txStatus; // Transmitter Enabled/Disabled

int txCharacterLength; // Bits per Tx character

int txUnderRun; // What to do on a Tx underrun

int txPreamble; // Length of Preamble

int txPreamblePattern; // Type of Preamble

int txSharedZero; // Share 0s in adjacent flags?

int txClockSource; // Clock source for the transmitter

int txIdleCondition; // What to transmit when the line is idle

// Receiver Configuration Variables

int rxStatus; // Receiver Enabled/Disabled

int rxCharacterLength; // Bits per Rx character

int rxAddrSearchMode; // Rx address search mode

int rxAddress; // Address to search for

int rxClockSource; // Clock source for the receiver

int rxReceiveStatusBlocks; // Enable/disable 16 bit receive

// status blocks in RX FIFO

// Pin Configuration Variables

int interfaceMode; // DTE or DCE interface

int txDataPinMode; // Auto (system use) or GPIO

int rxDataPinMode; // Auto (system use) or GPIO

int txClockPinMode; // Auto (system use) or GPIO

int rxClockPinMode; // Auto (system use) or GPIO

int ctsPinMode; // Auto (system use) or GPIO

int rtsPinMode; // Auto (system use) or GPIO

int loopbackMode; // None, internal, or external loop back

// Misc Configuration Variables

int packetFraming; // Internal use only, leave enabled

} GSC_HDLC_CONFIG, *PGSC_HDLC_CONFIG;

90

GSC_BISYNC_CONFIG Structure

typedef struct _GSC_BISYNC_CONFIG

{

// Channel Configuration Variables

int bitRate; // Baud rate for the channel.

int encoding; // Encoding - NRZ, BiPhase, etc.

int protocol; // Bus Protocol - RS485, RS232, V.35, etc.

int termination; // Termination Resistors enabled/disabled

int parity; // Parity mode - None, Even, Odd, etc.

int crcMode; // CRC Type - Disabled, CCITT, etc.

int crcInitialValue; // Initial CRC - All 1 or 0

// Transmitter Configuration Variables

int txStatus; // Transmitter Enabled/Disabled

int txCharacterLength; // Bits per Tx character

int txClockSource; // Clock source for the transmitter

int txIdleCondition; // What to transmit when the line is idle

int txSyncWord; // Two character sync pattern

int txUnderRun; // What to do on a Tx underrun

int txPreamble; // Enable/disable preamble before sync open

int txPreambleLength; // Preamble length - 8,16,32,64 bits

int txPreamblePattern; // Preamble pattern - all zeros, all
 // ones, etc.

int txShortSync; // Length of sync character –
 // 8 bits or same as txCharacterLength

// Receiver Configuration Variables

int rxStatus; // Receiver Enabled/Disabled

int rxClockSource; // Clock source for the receiver

int rxCharacterLength; // Bits per Rx character

int rxSyncWord; // Two character sync pattern

int rxSyncStrip; // Sync character stripping enable/disable

int rxShortSync; // Length of sync character - 8 bits or same

// as rxCharacterLength

// Pin Configuration Variables

int interfaceMode; // DTE or DCE interface

int txDataPinMode; // Auto (system use) or GPIO

int rxDataPinMode; // Auto (system use) or GPIO

int txClockPinMode; // Auto (system use) or GPIO

int rxClockPinMode; // Auto (system use) or GPIO

int ctsPinMode; // Auto (system use) or GPIO

int rtsPinMode; // Auto (system use) or GPIO

int loopbackMode; // None, internal, or external loop back

// Misc Configuration Variables

int packetFraming; // Internal use only, leave disabled

} GSC_BISYNC_CONFIG, *PGSC_BISYNC_CONFIG;

91

GSC_SYNC_CONFIG Structure

typedef struct _GSC_SYNC_CONFIG

{

// Channel Configuration Variables

int bitRate; // Baud rate for the channel.

int encoding; // Encoding - NRZ, NRZB

int protocol; // Bus Protocol - RS485, RS232, V.35, etc.

int termination; // Termination Resistors enabled/disabled

// Transmitter Configuration Variables

int txStatus; // Transmitter Enabled/Disabled

int txCharacterLength; // Bits per Tx character

int txGapLength; // Bits between Tx characters

int txClockSource; // Clock source for the transmitter

int txClockEdge; // Clock edge for the transmitter

int txEnvPolarity; // Envelope polarity for the transmitter

int txIdleCondition; // What to transmit when the line is idle

int txClockIdleCondition; // What to do with the clock when line idle

int txMsbLsb; // Bit order for transmitter

// Receiver Configuration Variables

int rxStatus; // Receiver Enabled/Disabled

int rxClockSource; // Clock source for the receiver

int rxClockEdge; // Clock edge for the receiver

int rxEnvPolarity; // Envelope polarity for the receiver

int rxMsbLsb; // Bit order for receiver

// Pin Configuration Variables

int interfaceMode; // DTE or DCE interface

int txDataPinMode; // Auto (system use) or GPIO

int rxDataPinMode; // Auto (system use) or GPIO

int txClockPinMode; // Auto (system use) or GPIO

int rxClockPinMode; // Auto (system use) or GPIO

int txEnvPinMode; // Auto (system use) or GPIO

int rxEnvPinMode; // Auto (system use) or GPIO

int loopbackMode; // None, internal, or external loop back

// Misc Configuration Variables

int packetFraming; // Internal use only, leave disabled

} GSC_SYNC_CONFIG, *PGSC_SYNC_CONFIG;

92

GSC_BISYNC16_CONFIG Structure

typedef struct _GSC_BISYNC16_CONFIG

{

// Channel Configuration Variables

int bitRate; // Baud rate for the channel.

int encoding; // Encoding - NRZ, BiPhase, etc.

int protocol; // Bus Protocol - RS485, RS232, V.35, etc.

int termination; // Termination Resistors enabled/disabled

// Transmitter Configuration Variables

int txStatus; // Transmitter Enabled/Disabled

int txIdleCondition; // What to transmit when the line is idle

int txSyncWord; // Two character sync pattern

int txBitOrder;

int txByteOrder;

// Receiver Configuration Variables

int rxStatus; // Receiver Enabled/Disabled

int rxSyncWord; // Two character sync pattern

int maxRxCount;

// Pin Configuration Variables

int interfaceMode; // DTE or DCE interface

int txDataPinMode; // Auto (system use) or GPIO

int rxDataPinMode; // Auto (system use) or GPIO

int txClockPinMode; // Auto (system use) or GPIO

int rxClockPinMode; // Auto (system use) or GPIO

int ctsPinMode; // Auto (system use) or GPIO

int rtsPinMode; // Auto (system use) or GPIO

int loopbackMode; // None, internal, or external loop back

} GSC_BISYNC16_CONFIG, *PGSC_BISYNC16_CONFIG;

93

Channel Encoding Definitions

The Channel Encoding Definitions are used to set the desired channel encoding for

each channel of the SIO4 board. These definitions are passed as a parameter of the

GscSio4ChannelSetEncoding(…) command.

Macro Description
GSC_ENCODING_NRZ

GSC_ENCODING_NRZB

GSC_ENCODING_NRZI_MARK

GSC_ENCODING_NRZI_SPACE

GSC_ENCODING_BIPHASE_MARK

GSC_ENCODING_BIPHASE_SPACE

GSC_ENCODING_BIPHASE_LEVEL

GSC_ENCODING_DIFF_BIPHASE_LEVEL

94

Channel Protocol and Termination Definitions

GSC_PROTOCOL_RS422_RS485,

GSC_PROTOCOL_RS423,

GSC_PROTOCOL_RS232,

GSC_PROTOCOL_RS530_1,

GSC_PROTOCOL_RS530_2,

GSC_PROTOCOL_V35_1,

GSC_PROTOCOL_V35_2,

GSC_PROTOCOL_RS422_RS423_1,

GSC_PROTOCOL_RS422_RS423_2,

GSC_TERMINATION_ENABLED,

GSC_TERMINATION_DISABLED,

95

Channel Interrupt Definitions

GSC_INTR_RISING_EDGE,

GSC_INTR_FALLING_EDGE,

GSC_INTR_HIGH_TRUE,

GSC_INTR_LOW_TRUE,

GSC_INTR_SYNC_DETECT = 0x0001,

GSC_INTR_USC = 0x0002,

GSC_INTR_TX_FIFO_EMPTY = 0x0004,

GSC_INTR_TX_FIFO_FULL = 0x0008,

GSC_INTR_TX_FIFO_ALMOST_EMPTY = 0x0010,

GSC_INTR_RX_FIFO_EMPTY = 0x0020,

GSC_INTR_RX_FIFO_FULL = 0x0040,

GSC_INTR_RX_FIFO_ALMOST_FULL = 0x0080,

GSC_INTR_TX_TRANSFER_COMPLETE = 0x0100,

GSC_INTR_RX_TRANSFER_COMPLETE = 0x0200,

GSC_INTR_RX_ENVELOPE

// -Sync card definition

= GSC_INTR_SYNC_DETECT,

96

Channel Pin Definitions

GSC_PIN_DTE,

GSC_PIN_DCE,

GSC_PIN_AUTO,

GSC_PIN_GPIO,

GSC_PIN_RX_CLOCK, // Keep these enums in order

GSC_PIN_RX_DATA, //

GSC_PIN_CTS, //

GSC_PIN_DCD, //

GSC_PIN_TX_CLOCK, //

GSC_PIN_TX_DATA, //

GSC_PIN_RTS, //

GSC_PIN_AUXCLK, // Keep these enums in order

GSC_PIN_RX_ENV,

GSC_PIN_TX_ENV,

97

Channel Parity Definitions

GSC_PARITY_NONE,

GSC_PARITY_EVEN,

GSC_PARITY_ODD,

GSC_PARITY_MARK,

GSC_PARITY_SPACE,

98

Channel Stop Bits Definition

GSC_STOP_BITS_0,

GSC_STOP_BITS_1,

GSC_STOP_BITS_1_5,

GSC_STOP_BITS_2,

Loopback Definitions

GSC_LOOP_NONE,

GSC_LOOP_INTERNAL,

GSC_LOOP_EXTERNAL,

HDLC CRC Definitions

GSC_CRC_NONE,

GSC_CRC_16,

GSC_CRC_32,

GSC_CRC_CCITT,

GSC_CRC_INIT_0,

GSC_CRC_INIT_1,

99

Local Register Definitions

The Local Register Definitions are used to access the various registers that are

contained in the on board FPGA. These registers should not be accessed during normal

operation and are included only for diagnostic purposes. For detailed descriptions of the

registers, refer to the SIO4 hardware user’s manual.

Macro Value Description
FW_REVISION_REG 0x0000 Firmware Revision Register

BOARD_CONTROL_REG 0x0004 Board Control Register

BOARD_STATUS_REG 0x0008 Board Status Register

CLOCK_CONTROL_REG 0x000c Clock Control Register

TX_ALMOST_BASE_REG 0x0010 Base value for the Tx Almost registers

RX_ALMOST_BASE_REG 0x0014 Base value for the Rx Almost registers

DATA_FIFO_BASE_REG 0x0018 Base value for the Tx and Rx Data FIFOs

CONTROL_STATUS_BASE_REG 0x001c Base value for the Control/Status registers

SYNC_CHARACTER_BASE_REG 0x0050 Base value for the Sync Byte Registers

INTERRUPT_CONTROL_REG 0x0060 Interrupt Control Register

INTERRUPT_STATUS_REG 0x0064 Interrupt Status/Clear Register

INTERRUPT_EDGE_LEVEL_REG 0x0068 Interrupt Edge/Level Register (RO)

INTERRUPT_HI_LO_REG 0x006c Interrupt High/Low, Rising/Falling register

PIN_SOURCE_BASE_REG 0x0080 Base value for the Pin Source Registers

PIN_STATUS_BASE_REG 0x0090 Base value for the Pin Status Registers

POSC_RAM_ADDRESS_REG 0x00a0 Programmable OSC Address Register

POSC_RAM_DATA_REG 0x00a4 Programmable OSC Data Register

POSC_CONTROL_STATUS_REG 0x00a8 Programmable OSC Control/Status Register

TX_COUNT_BASE_REG 0x00b0

FIFO_COUNT_BASE_REG 0x00d0 Base value for the FIFO Count Registers

FIFO_SIZE_BASE_REG 0x00e0 Base value for the FIFO Size Registers

FEATURES_REG 0x00fc Features Register

100

Channel Register Definitions

The Channel Register Definitions are used to access the various registers that are

contained in the Zilog USC chip for each channel. These registers should not be accessed

during normal operation and are included only for diagnostic purposes. For detailed

descriptions of the registers, refer to the Zilog USC hardware user’s manual.

Macro Value Description
USC_CCAR 0x0000 Channel Command/Address Register

USC_CMR 0x0002 Channel Mode Register

USC_CCSR 0x0004 Channel Command/Status Register

USC_CCR 0x0006 Channel Control Register

USC_TMDR 0x000c Test Mode Data Register

USC_TMCR 0x000e Test Mode Control Register

USC_CMCR 0x0010 Clock Mode Control Register

USC_HCR 0x0012 Hardware Configuration Register

USC_IVR 0x0014 Interrupt Vector Register

USC_IOCR 0x0016 I/O Control Register

USC_ICR 0x0018 Interrupt Control Register

USC_DCCR 0x001a Daisy Chain Control Register

USC_MISR 0x001c Misc. Interrupt Status Register

USC_SICR 0x001e Status Interrupt Control Register

USC_RDR 0x0020 Receive Data Register (RO)

USC_RMR 0x0022 Receive Mode Register

USC_RCSR 0x0024 Receive Command Status Register

USC_RICR 0x0026 Receive Interrupt Control Register

USC_RSR 0x0028 Receive Sync Register

USC_RCLR 0x002a Receive Count Limit Register

USC_RCCR 0x002c Receive Character Count Register

USC_TC0R 0x002e Time Constant 0 Register

USC_TDR 0x0030 Transmit Data Register (WO)

USC_TMR 0x0032 Transmit Mode Register

USC_TCSR 0x0034 Transmit Command Status Register

USC_TICR 0x0036 Transmit Interrupt Control Register

USC_TSR 0x0038 Transmit Sync Register

USC_TCLR 0x003a Transmit Count Limit Register

USC_TCCR 0x003c Transmit Character Count Register

USC_TC1R 0x003e Time Constant 1 Register

101

Miscellaneous Token Definitions

GSC_ENABLED,

GSC_DISABLED,

GSC_CLOCK_INTERNAL,

GSC_CLOCK_EXTERNAL,

GSC_CLOCK_EXT_RX_AUX (This refers to the Cable Rx Aux Clock input source.)

GSC_LSB_FIRST,

GSC_MSB_FIRST,

