
DIO40
Discrete 40-Bit Digital I/O

PMC64-HPDI40LS-DIO

Linux Device Driver
User Manual

Manual Revision: December 7, 2016

Driver Release Version 3.0.68.18.0

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

DIO40, Linux Device Driver, User Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2006-2016, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this material, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose. Although extensive editing

and reviews are performed before release to ECO control, General Standards Corporation assumes no

responsibility for any errors that may exist in this document. No commitment is made to update or keep current the

information contained in this document.

General Standards Corporation does not assume any liability arising out of the application or use of any product

or circuit described herein, nor is any license conveyed under any patent rights or any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this product to improve

reliability, performance, function, or design.

ALL RIGHTS RESERVED.

The Purchaser of this software may use or modify in source form the subject software, but not to re-market or

distribute it to outside agencies or separate internal company divisions. The software, however, may be embedded in

the Purchaser’s distributed software. In the event the Purchaser’s customers require the software source code, then

they would have to purchase their own copy of the software.

General Standards Corporation makes no warranty of any kind with regard to this software, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose and makes this software

available solely on an “as-is” basis. General Standards Corporation reserves the right to make changes in this

software without reservation and without notification to its users.

The information in this document is subject to change without notice. This document may be copied or reproduced

provided it is in support of products from General Standards Corporation. For any other use, no part of this

document may be copied or reproduced in any form or by any means without prior written consent of General

Standards Corporation.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

DIO40, Linux Device Driver, User Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. No table of figures entries found.Introduction ... 7

1.1. Purpose .. 7

1.2. Acronyms ... 7

1.3. Definitions .. 7

1.4. Software Overview .. 7

1.5. Hardware Overview .. 7

1.6. Reference Material .. 7

2. Installation ... 9

2.1. CPU and Kernel Support ... 9
2.1.1. 32-bit Support Under 64-bit Environments .. 9

2.2. The /proc File System ... 10

2.3. File List .. 10

2.4. Directory Structure ... 10

2.5. Installation ... 10

2.6. Removal ... 11

2.7. Overall Make Script ... 11

3. The Driver.. 12
3.1.1. Build ... 12
3.1.2. Startup .. 12
3.1.3. Verification ... 13
3.1.4. Version ... 14
3.1.5. Shutdown .. 14

3.2. Driver Interface Library .. 14
3.2.1. Build ... 14
3.2.2. Use .. 15

4. Driver Interface ... 16

4.1. Macros.. 16
4.1.1. IOCTL .. 16
4.1.2. Registers ... 16

4.2. Data Types ... 16
4.2.1. gsc_reg_t .. 16

4.3. Functions.. 17
4.3.1. close() ... 17
4.3.2. ioctl() .. 18
4.3.3. open().. 18
4.3.4. read() .. 20
4.3.5. write() ... 20

4.4. IOCTL Services ... 20
4.4.1. DIO40_IOCTL_REG_MOD .. 20
4.4.2. DIO40_IOCTL_REG_READ .. 21

DIO40, Linux Device Driver, User Manual

4

General Standards Corporation, Phone: (256) 880-8787

4.4.3. DIO40_IOCTL_REG_WRITE ... 22

5. Driver Interface Library .. 23

5.1. GPIO Port A Services ... 23
5.1.1. dio40_gpio_a_dir_get() .. 23
5.1.2. dio40_gpio_a_dir_mod() .. 23
5.1.3. dio40_gpio_a_dir_set() ... 23
5.1.4. dio40_gpio_a_in_get().. 24
5.1.5. dio40_gpio_a_out_get().. 24
5.1.6. dio40_gpio_a_out_mod() ... 24
5.1.7. dio40_gpio_a_out_set() .. 25

5.2. GPIO Port A Tx Clock Services .. 25
5.2.1. dio40_gpio_a0_tx_clock_get() ... 25
5.2.2. dio40_gpio_a0_tx_clock_set() ... 25
5.2.3. dio40_gpio_a7_tx_clock_get() ... 26
5.2.4. dio40_gpio_a7_tx_clock_set() ... 26

5.3. GPIO Port B Services ... 26
5.3.1. dio40_gpio_b_dir_get() .. 26
5.3.2. dio40_gpio_b_dir_mod() .. 27
5.3.3. dio40_gpio_b_dir_set() .. 27
5.3.4. dio40_gpio_b_in_get() ... 27
5.3.5. dio40_gpio_b_out_get() ... 28
5.3.6. dio40_gpio_b_out_mod() ... 28
5.3.7. dio40_gpio_b_out_set() .. 28

5.4. LED Services ... 29
5.4.1. dio40_led_get()... 29
5.4.2. dio40_led_mod() .. 29
5.4.3. dio40_led_set() ... 29

5.5. Register Access Services ... 30
5.5.1. dio40_reg_mod() .. 30
5.5.2. dio40_reg_read() .. 30
5.5.3. dio40_reg_write() ... 30

5.6. Additional Services ... 31
5.6.1. dio40_close() .. 31
5.6.2. dio40_ioctl() ... 31
5.6.3. dio40_lib_version() .. 31
5.6.4. dio40_open()... 32
5.6.5. dio40_reset() ... 32

6. Operating Information ... 33

7. Document Source Code Examples ... 34

7.1. Files .. 34

7.2. Build ... 34

7.3. Library Use .. 34

8. Utility Source Code ... 35

8.1. Files .. 35

8.2. Build ... 35

DIO40, Linux Device Driver, User Manual

5

General Standards Corporation, Phone: (256) 880-8787

8.3. Library Use .. 35

9. Sample Applications ... 36

9.1. din - Digital Input.. 36

9.2. dout - Digital Output - …/dout/ ... 36

9.3. led – LED Exerciser - …/led/ ... 36

9.4. sbtest - Single Board Test - …/sbtest/ .. 36

Document History ... 37

DIO40, Linux Device Driver, User Manual

6

General Standards Corporation, Phone: (256) 880-8787

Table of Figures

DIO40, Linux Device Driver, User Manual

7

General Standards Corporation, Phone: (256) 880-8787

1. No table of figures entries found.Introduction

This user manual applies to driver version 3.0.68.18.0.

1.1. Purpose

The purpose of this document is to describe the interface to the DIO40 Linux device driver and the driver interface

library. This software provides the interface between "Application Software" and the DIO40 board. The interface to

this board is at the device level.

1.2. Acronyms

The following is a list of commonly occurring acronyms used throughout this document.

Acronyms Description

DMA Direct Memory Access

PCI Peripheral Component Interconnect

PMC PCI Mezzanine Card

1.3. Definitions

The following is a list of commonly occurring terms used throughout this document.

Term Definition

Application Application means the user mode process, which runs in the user space with user mode privileges.

DIO40 This is a substitute for the product’s formal name, which is HPDI40LS-DIO. Other prefixes or

suffixes may apply.

Driver Driver means the kernel mode device driver, which runs in the kernel space with kernel mode

privileges.

1.4. Software Overview

The DIO40 driver software executes under control of the Linux operating system and runs in Kernel Mode as a

Kernel Mode device driver. The DIO40 device driver is implemented as a standard dynamically loadable Linux

device driver written in the ‘C’ programming language. With the driver, user applications are able to open and close

a device and, while open, perform I/O control operations.

1.5. Hardware Overview

The DIO40 is a simple 40-bit discrete I/O interface board. The host side connection is PCI based and the external

I/O interface is via an 80 pin connector. The external interface includes 40 pin pairs that can each be arbitrarily

programmed as either input or output. The 40 programmable pins are divided into two groups; Port A and Port B.

Ports A is 8-bits wide and port B is 32-bits wide. All port pins are individually and arbitrarily programmable as

inputs or outputs. The DIO40 has no DMA or interrupt functionality.

1.6. Reference Material

The following reference material may be of particular benefit in using the DIO40 and this driver. The specifications

provide the information necessary for an in depth understanding of the specialized features implemented on this

board.

 The applicable HPDI40LS User Manual from General Standards Corporation.

DIO40, Linux Device Driver, User Manual

8

General Standards Corporation, Phone: (256) 880-8787

 The PCI9656 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com

http://www.plxtech.com/

DIO40, Linux Device Driver, User Manual

9

General Standards Corporation, Phone: (256) 880-8787

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 4.x, 3.x, 2.6, 2.4 and 2.2 running on a PC system with

one or more x86 processors. This release of the driver was tested under the below listed kernels.

Kernel Distribution
X86

32-bit 64-bit

4.5.5 Red Hat Fedora Core 24 Yes Yes

4.2.3 Red Hat Fedora Core 23 Yes Yes

4.0.4 Red Hat Fedora Core 22 Yes Yes

3.17.4 Red Hat Fedora Core 21 Yes Yes

3.11.10 Red Hat Fedora Core 20 Yes Yes

3.9.5 Red Hat Fedora Core 19 Yes Yes

3.6.10 Red Hat Fedora Core 18 Yes Yes

3.3.4 Red Hat Fedora Core 17 Yes Yes

3.1.0 Red Hat Fedora Core 16 Yes Yes

2.6.38 Red Hat Fedora Core 15 Yes Yes

2.6.35 Red Hat Fedora Core 14 Yes Yes

2.6.33 Red Hat Fedora Core 13 Yes Yes

2.6.31 Red Hat Fedora Core 12 Yes Yes

2.6.29 Red Hat Fedora Core 11 Yes Yes

2.6.27 Red Hat Fedora Core 10 Yes Yes

2.6.25 Red Hat Fedora Core 9 Yes Yes

2.6.23 Red Hat Fedora Core 8 Yes Yes

2.6.21 Red Hat Fedora Core 7 Yes Yes

2.6.18 Red Hat Fedora Core 6 Yes Yes

2.6.15 Red Hat Fedora Core 5 Yes Yes

2.6.11 Red Hat Fedora Core 4 Yes Yes

2.6.9 Red Hat Fedora Core 3 Yes Yes

2.4.21 Red Hat Enterprise Linux Workstation Release 3 Yes

2.2.14 Red Hat Linux 6.2 Yes

NOTE: While only Red Hat Fedora and Enterprise distributions are listed, numerous other

distributions are supported and have been tested on an as needed basis.

NOTE: The driver will have to be built before being used as it is provided in source form only.

NOTE: The driver has not been tested with a non-versioned kernel.

NOTE: The driver has not been tested on an SMP host.

2.1.1. 32-bit Support Under 64-bit Environments

This DIO40 device driver supports 32-bit applications under 64-bit environments. The availability of this feature in

the kernel depends on a 64-bit kernel being configured to support 32-bit application compatibility. Additionally, 2.6

kernels prior to 2.6.11 implemented 32-bit compatibility in a way that resulted in some drivers not being able to take

advantage of the feature. (In these kernels a driver’s IOCTL command codes must be globally unique. Beginning

with 2.6.11 this requirement has been lifted.) If the driver is not able to provide 32-bit support under a 64-bit kernel,

the “32-bit support” field in the /proc/dio40 file will be “no”.

DIO40, Linux Device Driver, User Manual

10

General Standards Corporation, Phone: (256) 880-8787

2.2. The /proc File System

While the driver is installed, the text file /proc/dio40 can be read to obtain information about the driver. Each

file entry includes an entry name followed immediately by a colon, a space character, then the entry value. Below is

an example of what appears in the file, followed by descriptions of each entry.

version: 3.0.68.18

boards: 1

Entry Description

version This gives the driver version number in the form x.x.x.x.

boards This identifies the total number of boards the driver detected.

2.3. File List

This release consists of the below listed files. The archive is described in detail in following subsections.

File Description

dio40.tar.gz This archive contains the driver and all related sources.

dio40_linux_um.pdf This is a PDF version of this user manual.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory

structure is created and populated with the respective files.

Directory Content

dio40 This is the driver root directory. It contains the documentation, the overall make script and the

below listed subdirectories.

…/din This directory contains the Digital Input sample application.

…/docsrc This directory contains the code samples from this document (section 7, page 34).

…/dout This directory contains the Digital Output sample application.

…/driver This directory contains the driver and its sources (section 3, page 12).

…/led This directory contains the LED sample application.

…/lib This directory contains the DIO40 API Library (section 3.2, page 14).

…/sbtest This directory contains the Single Board Test application.

…/utils This directory contains utility sources used by the sample applications.

2.5. Installation

Install the driver and its related files following the below listed steps. This includes the device driver, the interface

library, the documentation source code, and the sample applications.

1. Change the current directory to /usr/src/linux/drivers. (The path name may vary among

distributions and kernel versions.)

2. Copy the archive file dio40.tar.gz into the current directory.

3. Issue the following command to decompress and extract the files from the provided archive. This

creates the directory dio40 in the current directory, and then copies all of the archive’s files into this

new directory.

tar –xzvf dio40.tar.gz

DIO40, Linux Device Driver, User Manual

11

General Standards Corporation, Phone: (256) 880-8787

2.6. Removal

Follow the below steps to remove the driver and its related files. This includes the device driver, the interface

library, the documentation source code, and the sample applications.

1. Shutdown the driver as described in following paragraphs.

2. Change to the directory where the driver archive was installed. This should be

/usr/src/linux/drivers. (The path name may vary among distributions and kernel versions.)

3. Issue the below command to remove the driver archive and all of the installed driver files.

rm –rf dio40.tar.gz dio40

4. Issue the below command to remove all of the installed device nodes.

rm –f /dev/dio40.*

5. If the automated startup procedure was adopted (described in following paragraphs), then edit the

system startup script rc.local and remove the line that invokes the start script. The file

rc.local should be located in the /etc/rc.d directory.

2.7. Overall Make Script

An overall make script is included in the root installation directory. Executing this script will perform a make for all

build targets included in the release, and it will also load the driver. The script is named make_all. Follow the

below steps to perform an overall make and to load the driver.

1. Change to the driver’s directory, which may be /usr/src/linux/drivers/dio40.

2. Issue the following command to make all archive targets and to load the driver.

./make_all

DIO40, Linux Device Driver, User Manual

12

General Standards Corporation, Phone: (256) 880-8787

3. The Driver

This driver and its related files are contained in the archive file dio40.tar.gz. The archive’s device driver files

are listed below. The paragraphs that follow give installation, build and startup instructions.

File Description

*.c The driver source files.

*.h The driver header files.

dio40.h The driver interface header file. This header should be included by DIO40 applications.

Makefile The driver make file.

makefile.dep An automatically generated make dependency file.

start Shell script to install the driver executable and device nodes.

3.1.1. Build

NOTE: Building the driver requires installation of the kernel sources.

Follow the below steps to build the driver.

1. Change to the directory where the driver and its sources were installed. This should be

/usr/src/linux/drivers/dio40/driver.

2. Remove all existing build targets by issuing the below command.

make clean

3. Build the driver by issuing the below command.

make all

NOTE: Due to the differences between the many Linux distributions some build errors may

occur. These errors may include system header location differences and should be easily

correctable.

3.1.2. Startup

The startup script used in this procedure is designed to insure that the driver module in the install directory

is the module that is loaded. This is accomplished by making sure that an already loaded module is first

unloaded before attempting to load the module from the disk drive. In addition, the script also deletes and

recreates the device nodes. This is done to insure that the device nodes in use have the same major number

as assigned dynamically to the driver by the kernel, and so that the number of device nodes correspond to

the number of boards identified by the driver.

NOTE: The driver will have to be built before being used as it is provided in source form only.

3.1.2.1. Manual Driver Startup Procedures

Start the driver manually by following the below listed steps.

1. Login as root user, as some of the steps require root privileges.

2. Change to the directory where the driver was installed. This should be

/usr/src/linux/drivers/dio40/driver.

DIO40, Linux Device Driver, User Manual

13

General Standards Corporation, Phone: (256) 880-8787

3. Install the driver module and create the device nodes by executing the below command. If any errors

are encountered then an appropriate error message will be displayed.

./start

NOTE: The script’s default specifies that the driver is installed in the same directory as the script.

The script will fail if this is not so.

NOTE: The above step must be repeated each time the host is rebooted.

NOTE: The DIO40 device node major number is assigned dynamically by the kernel. The minor

numbers and the device node suffix numbers are index numbers beginning with zero, and increase

by one for each additional board installed.

4. Verify that the device module has been loaded by issuing the below command and examining the

output. The module name dio40 should be included in the output.

lsmod

5. Verify that the device nodes have been created by issuing the below command and examining the

output. The output should include one node for each installed board.

ls –l /dev/dio40.*

3.1.2.2. Automatic Driver Startup Procedures

Start the driver automatically with each system reboot by following the below listed steps.

1. Locate and edit the system startup script rc.local, which should be in the /etc/rc.d directory.

Modify the file by adding the below line so that it is executed with every reboot.

/usr/src/linux/drivers/dio40/driver/start

NOTE: The script’s default specifies that the driver is installed in the same directory as the script.

The startup script will fail if this is not so.

2. Load the driver and create the required device nodes by rebooting the system.

3. Verify that the driver is loaded and that the device nodes have been created by following the

verification steps given in the manual startup procedures.

3.1.3. Verification

WARNING: When using the test application the DIO40 and any externally attached equipment

may be damaged if the DIO40’s external interface has a cable other than an appropriate loop back

cable attached. Damage may result because the application methodically configures each I/O pin

as an output and drives the output to both its high and low states. No damage will result if no cable

at all is attached.

Follow the below steps to verify that the driver has been properly installed and started.

1. Change to the directory where the sample application sbtest was installed.

2. Start the application by issuing the below command.

DIO40, Linux Device Driver, User Manual

14

General Standards Corporation, Phone: (256) 880-8787

./sbtest

3.1.4. Version

The driver version number can be obtained in a variety of ways. It is reported by the driver both when the driver is

loaded and when it is unloaded (depending on kernel configuration options, this may be visible only in

/var/log/messages). It is recorded in the text file /proc/dio40.

3.1.5. Shutdown

Shutdown the driver following the below listed steps.

1. Login as root user, as some of the steps require root privileges.

2. If the driver is currently loaded then issue the below command to unload the driver.

rmmod dio40

3. Verify that the driver module has been unloaded by issuing the below command. The module name

dio40 should not be in the list.

lsmod

3.2. Driver Interface Library

The archive file dio40.tar.gz contains a library with a feature based interface to the DIO40 and the driver. The

purpose of the library is to simplify some of the details of using the DIO40 and the driver. The library is provided in

a statically linkable form and includes all source code. These files are installed into the directory

/usr/src/linux/drivers/dio40/lib.

File Description

*.c These are the C source files.

dio40_lib.h This is the library header file.

makefile This is the library make file.

makefile.dep This is an automatically generated make dependency file.

3.2.1. Build

Follow the below steps to build the library.

1. Change to the directory where the library sources were installed. This should be

/usr/src/linux/drivers/dio40/lib.

2. Remove all existing build targets by issuing the below command.

make clean

3. Build the library by issuing the below command.

make all

DIO40, Linux Device Driver, User Manual

15

General Standards Corporation, Phone: (256) 880-8787

3.2.2. Use

The library is used both at application compile time and at application link time. Compile time use has two

requirements. First, include the header file dio40_lib.h in each module referencing a library component.

Second, expand the include file search path to search the directory where the library header is located. This should

be /usr/src/linux/drivers/dio40/lib. Link time use also has two requirements. First, include the static

library dio40_lib.a in the list of files to be linked into the application. Second, expand the library file search

path to search the directory where the library is located. This should also be

/usr/src/linux/drivers/dio40/lib.

DIO40, Linux Device Driver, User Manual

16

General Standards Corporation, Phone: (256) 880-8787

4. Driver Interface

The DIO40 driver conforms to the device driver standards required by the Linux Operating System and contains the

standard driver entry points. The device driver provides a standard driver interface to the GSC DIO40 board for

Linux applications. The interface includes various macros, data types and functions, all of which are described in the

following paragraphs. The DIO40 specific portion of the driver interface is defined in the header file dio40.h,

portions of which are described in this section. The header defines numerous items in addition to those described

here.

NOTE: Contact General Standards Corporation if additional driver functionality is required.

4.1. Macros

The driver interface includes the following macros which are defined in dio40.h. The header also contains various

other utility type macros which are provided without documentation.

4.1.1. IOCTL

The IOCTL macros are documented following the function call descriptions.

4.1.2. Registers

4.1.2.1. GSC Registers

The following table gives the complete set of GSC specific DIO40 registers. For detailed definitions of these

registers refer to the DIO40 User Manual.

Macros Description

DIO40_GSC_BCR Board Control Register (BCR)

DIO40_GSC_BSR Board Status Register (BSR)

DIO40_GSC_CCAR Cable Control A Register (CCAR)

DIO40_GSC_CCBR Cable Control B Register (CCBR)

DIO40_GSC_CIAR Cable Input A Register (CIAR)

DIO40_GSC_CIBR Cable Input B Register (CIBR)

DIO40_GSC_COAR Cable Output A Register (COAR)

DIO40_GSC_COBR Cable Output B Register (COBR)

DIO40_GSC_FRR Firmware Revision Register (FRR)

DIO40_GSC_LOR LED Output Register (LOR)

4.1.2.2. PLX PCI 9656 Registers

The PCI interface chip used by the DIO40 is a PLX PCI9656. As this chip’s registers are of little use to DIO40

users, the PCI and PLX feature registers are not listed here. For detailed definitions of these registers refer to the

PCI9656 Data Book.

4.2. Data Types

This driver interface includes the following data types which are defined in dio40.h.

4.2.1. gsc_reg_t

This structure defines the data fields for the information involved in the register access IOCTL services. Read the

details of the individual services for additional information.

DIO40, Linux Device Driver, User Manual

17

General Standards Corporation, Phone: (256) 880-8787

Definition

typedef struct

{

 u32 reg;

 u32 value;

 u32 mask;

} gsc_reg_t;

Fields Description

reg This field identifies the register to be accessed.

value This field identifies the value retrieved by read operations and the value to apply by write

operations.

mask This field identifies the register bits from the value field that are to be applied during the read-

modify-write IOCTL service. If a bit is set in the mask, then the corresponding value bit is

applied to the register. If a mask bit is not set then the corresponding register bit is left

unchanged.

4.3. Functions

This driver interface includes the following functions.

4.3.1. close()

This function is the entry point to close a connection to an open DIO40 board. This function should only be called

after a successful open of the respective device.

NOTE: The functionality of the close() system call is available in the DIO40 Library via the

dio40_close() function. See section 5.6.1 on page 31.

Prototype

int close(int fd);

Argument Description

fd This is the file descriptor of the device to be closed.

Return Value Description

-1 An error occurred. Consult errno.

0 The operation succeeded.

Example

#include <errno.h>

#include <stdio.h>

#include "dio40_dsl.h"

int dio40_dsl_close(int fd)

{

 int status;

 status = close(fd);

DIO40, Linux Device Driver, User Manual

18

General Standards Corporation, Phone: (256) 880-8787

 if (status == -1)

 printf("close() failure, errno = %d\n", errno);

 return(status);

}

4.3.2. ioctl()

This function is the entry point to performing setup and control operations on a DIO40 board. This function should

only be called after a successful open of the respective device. The specific operation performed varies according to

the request argument. The request argument also governs the use and interpretation of any additional

arguments. The set of supported IOCTL services is defined in a following section.

NOTE: The functionality of the ioctl() system call is available in the DIO40 Library via the

dio40_ioctl() function. See section 5.6.2 on page 31.

Prototype

int ioctl(int fd, int request, ...);

Argument Description

fd This is the file descriptor of the device to access.

request This specifies the desired operation to be performed.

... This is any additional arguments. If request does not call for any additional arguments,

then any additional arguments provided are ignored. The DIO40 IOCTL services use at most

one argument, which is represented by a 32-bit value.

Return Value Description

-1 An error occurred. Consult errno.

0 The operation succeeded.

Example

#include <errno.h>

#include <stdio.h>

#include "dio40_dsl.h"

int dio40_dsl_ioctl(int fd, int request, void *arg)

{

 int status;

 status = ioctl(fd, request, (unsigned long) arg);

 if (status == -1)

 printf("ioctl() failure, errno = %d\n", errno);

 return(status);

}

4.3.3. open()

This function is the entry point to open a connection to an DIO40 board. The pathname to an DIO40 board is

/dev/dio40.n, where the trailing “n” is the zero based index of the board to access.

DIO40, Linux Device Driver, User Manual

19

General Standards Corporation, Phone: (256) 880-8787

NOTE: The functionality of the open() system call is available in the DIO40 Library via the

dio40_open() function. See section 5.6.4 on page 32. This function permits an application to

access a DIO40 by specifying only the index of the board to access. The remaining details are

handled by the library.

Prototype

int open(const char* pathname, int flags);

Argument Description

pathname This is the name of the device to open.

flags This is the desired device access. The option O_RDWR is required. The option O_APPEND

is optional and opens the device for shared access. This permits multiple applications to

gain simultaneous access to the same device. If this flag is omitted, then the request is for

exclusive access by the calling process.

NOTE: Upon successful opening, either for exclusive access or the initial shared access, the

device and all settings are put in an initialized state. The device state is unaltered when a shared

access request gains access to a device that is already open.

NOTE: Another form of the open() function has a mode argument. This form is not displayed

here as the mode argument is ignored when opening an existing file/device.

Return Value Description

-1 An error occurred. Consult errno.

else A valid file descriptor.

Example

#include <errno.h>

#include <fcntl.h>

#include <stdio.h>

#include "dio40_dsl.h"

int dio40_dsl_open(int index, int share)

{

 int fd;

 int flags;

 char name[80];

 sprintf(name, "/dev/" DIO40_BASE_NAME ".%d", index);

 flags = O_RDWR | (share ? O_APPEND : 0);

 fd = open(name, flags);

 if (fd == -1)

 {

 printf("open() failure on %s, errno = %d\n",

 name,

 errno);

 }

 return(fd);

}

DIO40, Linux Device Driver, User Manual

20

General Standards Corporation, Phone: (256) 880-8787

4.3.3.1. Access Modes

The presence or absence of the O_APPEND flag in the open call determines the device access mode, as follows.

Shared Access Mode:

In the open() call, including the O_APPEND flag opens the device in Shared Access Mode. The first open() call

including this flag will succeed and return with the device in an initialized state. Subsequent open() calls, if this

flag is present, will also succeed, but will not alter the device state. Once opened in Shared Access Mode, device

access remains in this mode until all Shared Access Mode open requests release the device with a close() call.

Exclusive Access Mode:

In the open() call, excluding the O_APPEND flag opens the device in Exclusive Access Mode. In this mode, only

one application at a time can access the device. The first open() call will succeed and will return with the device

in an initialized state. Subsequent open() calls, whether or not the O_APPEND flag is used, will fail until the

device is released with a close() call by the initial process.

4.3.4. read()

The DIO40 does not support a read operation as the board has neither data storage nor synchronous data reception

capability. Data read operations are performed by calling the appropriate library interface routines or reading the

appropriate register.

4.3.5. write()

The DIO40 does not support a write operation as the board has neither data storage nor synchronous data

transmission capability. Data write operations are performed by calling the appropriate library interface routines or

writing to the appropriate register.

4.4. IOCTL Services

The DIO40 driver implements the following IOCTL services. Each service is described along with the applicable

ioctl() function arguments. In the definitions given the optional argument is identified as arg and is an

unsigned long data type. Unless otherwise stated the return value definitions are those defined for the

ioctl() function call and any errors codes are accessed via errno.

4.4.1. DIO40_IOCTL_REG_MOD

This service performs a read-modify-write operation on a DIO40 register. This includes only the GSC specific

registers. All PCI and PLX PCI9656 feature set registers are read-only. Refer to dio40.h for a complete list of the

accessible registers.

Usage

ioctl() Argument Description

request DIO40_IOCTL_REG_MOD

arg gsc_reg_t*

Example

#include <errno.h>

#include <stdio.h>

DIO40, Linux Device Driver, User Manual

21

General Standards Corporation, Phone: (256) 880-8787

#include "dio40_dsl.h"

int dio40_dsl_reg_mod(

 int fd,

 u32 reg,

 u32 value,

 u32 mask)

{

 gsc_reg_t parm;

 int status;

 parm.reg = reg;

 parm.value = value;

 parm.mask = mask;

 status = ioctl(fd,

 DIO40_IOCTL_REG_MOD,

 (unsigned long) &parm);

 if (status == -1)

 printf("ioctl() failure, errno = %d\n", errno);

 return(status);

}

4.4.2. DIO40_IOCTL_REG_READ

This service reads the value of a DIO40 register. This includes all PCI registers, all PLX PCI9656 feature set

registers, and all GSC specific registers. Refer to dio40.h for a complete list of the accessible registers.

Usage

ioctl() Argument Description

request DIO40_IOCTL_REG_READ

arg gsc_reg_t*

Example

#include <errno.h>

#include <stdio.h>

#include "dio40_dsl.h"

int dio40_dsl_reg_read(int fd, u32 reg, u32* value)

{

 gsc_reg_t parm;

 int status;

 parm.reg = reg;

 parm.value = (u32) 0xDEADBEEF;

 parm.mask = 0; // ignored for reads

 status = ioctl(fd,

 DIO40_IOCTL_REG_READ,

 (unsigned long) &parm);

DIO40, Linux Device Driver, User Manual

22

General Standards Corporation, Phone: (256) 880-8787

 if (value)

 value[0] = parm.value;

 if (status == -1)

 printf("ioctl() failure, errno = %d\n", errno);

 return(status);

}

4.4.3. DIO40_IOCTL_REG_WRITE

This service writes a value to a DIO40 register. This includes only the GSC specific registers. All PCI and PLX

PCI9656 feature set registers are read-only. Refer to dio40.h for a complete list of the accessible registers.

Usage

ioctl() Argument Description

request DIO40_IOCTL_REG_WRITE

arg gsc_reg_t*

Example

#include <errno.h>

#include <stdio.h>

#include "dio40_dsl.h"

int dio40_dsl_reg_write(int fd, u32 reg, u32 value)

{

 gsc_reg_t parm;

 int status;

 parm.reg = reg;

 parm.value = value;

 parm.mask = 0; // ignored for writes

 status = ioctl(fd,

 DIO40_IOCTL_REG_WRITE,

 (unsigned long) &parm);

 if (status == -1)

 printf("ioctl() failure, errno = %d\n", errno);

 return(status);

}

DIO40, Linux Device Driver, User Manual

23

General Standards Corporation, Phone: (256) 880-8787

5. Driver Interface Library

The Driver Interface Library is provided to simplify access to some of the DIO40 features. The library is provided as

a statically linkable library and includes full source code. The purpose of this section is merely to give a summary of

the library’s interface functions. The library interface is defined in the header file dio40_lib.h. Application

sources need to include this header to use the listed services.

NOTE: Contact General Standards Corporation if additional library functionality is required.

5.1. GPIO Port A Services

The following services provide access to GPIO Port A.

5.1.1. dio40_gpio_a_dir_get()

This function retrieves the direction for the Port A pins. If a bit is set, then the port pin is an output. Otherwise it is

an input. Bit zero corresponds to Port A0.

Prototype

int dio40_gpio_a_dir_get(int fd, u8* dir);

Argument Description

fd This is the file descriptor of the device to be accessed.

dir If non-NULL, the direction data is stored here.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.1.2. dio40_gpio_a_dir_mod()

This function performs a read-modify-write operation on the direction settings for the Port A pins. If a bit is set, then

the port pin is an output. Otherwise it is an input. Bit zero corresponds to Port A0.

Prototype

int dio40_gpio_a_dir_mod(int fd, u8 dir, u8 mask);

Argument Description

fd This is the file descriptor of the device to be accessed.

dir This is the direction data to apply.

mask These are the direction bits to modify. If a bit is set here, then the direction bit is modified. If

the bit is clear here, the direction bit is unaltered.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.1.3. dio40_gpio_a_dir_set()

This function updated the direction settings for the Port A pins. If a bit is set, then the port pin is an output.

Otherwise it is an input. Bit zero corresponds to Port A0.

DIO40, Linux Device Driver, User Manual

24

General Standards Corporation, Phone: (256) 880-8787

Prototype

int dio40_gpio_a_dir_set(int fd, u8 dir);

Argument Description

fd This is the file descriptor of the device to be accessed.

dir This is the direction data to apply.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.1.4. dio40_gpio_a_in_get()

This function reads the input from the cable’s Port A pins. Bit zero corresponds to Port A0.

Prototype

int dio40_gpio_a_in_get(int fd, u8* data);

Argument Description

fd This is the file descriptor of the device to be accessed.

data The data read is recorded here, if non-NULL.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.1.5. dio40_gpio_a_out_get()

This function retrieves what is recorded for output on the Port A pins. Bit zero corresponds to Port A0.

Prototype

int dio40_gpio_a_out_get(int fd, u8* data);

Argument Description

fd This is the file descriptor of the device to be accessed.

data If non-NULL, the data is stored here.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.1.6. dio40_gpio_a_out_mod()

This function performs a read-modify-write on what is recorded for output on the Port A pins. Bit zero corresponds

to Port A0.

Prototype

int dio40_gpio_a_out_mod(int fd, u8 data, u8 mask);

DIO40, Linux Device Driver, User Manual

25

General Standards Corporation, Phone: (256) 880-8787

Argument Description

fd This is the file descriptor of the device to be accessed.

data This is the data to apply.

mask These are the data bits to modify. If a bit is set here, then the recorded bit is modified. If the

bit is clear here, the recorded bit is unaltered.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.1.7. dio40_gpio_a_out_set()

This function updates what is recorded for output on the Port A pins. Bit zero corresponds to Port A0.

Prototype

int dio40_gpio_a_out_set(int fd, u8 data);

Argument Description

fd This is the file descriptor of the device to be accessed.

data This is the data to apply.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.2. GPIO Port A Tx Clock Services

The following services provide access to GPIO Port A Tx Clock features.

5.2.1. dio40_gpio_a0_tx_clock_get()

This function retrieves the enabled state of the Port A0 Tx Clock feature. If the feature is enabled, then the returned

value is one. If the feature is disabled, then the returned value is zero.

Prototype

int dio40_gpio_a0_tx_clock_get(int fd, u8* get);

Argument Description

fd This is the file descriptor of the device to be accessed.

get If non-NULL, the enabled state is stored here.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.2.2. dio40_gpio_a0_tx_clock_set()

This function sets the enabled state of the Port A0 Tx Clock feature.

Prototype

int dio40_gpio_a0_tx_clock_set(int fd, int set);

DIO40, Linux Device Driver, User Manual

26

General Standards Corporation, Phone: (256) 880-8787

Argument Description

fd This is the file descriptor of the device to be accessed.

set The feature is enabled if this is non-zero, and it is disabled if this is zero.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.2.3. dio40_gpio_a7_tx_clock_get()

This function retrieves the enabled state of the Port A7 Tx Clock feature. If the feature is enabled, then the returned

value is one. If the feature is disabled, then the returned value is zero.

Prototype

int dio40_gpio_a7_tx_clock_get(int fd, u8* get);

Argument Description

fd This is the file descriptor of the device to be accessed.

get If non-NULL, the enabled state is stored here.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.2.4. dio40_gpio_a7_tx_clock_set()

This function sets the enabled state of the Port A0 Tx Clock feature.

Prototype

int dio40_gpio_a7_tx_clock_set(int fd, int set);

Argument Description

fd This is the file descriptor of the device to be accessed.

set The feature is enabled if this is non-zero, and it is disabled if this is zero.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.3. GPIO Port B Services

The following services provide access to GPIO Port B.

5.3.1. dio40_gpio_b_dir_get()

This function retrieves the direction for the Port B pins. If a bit is set, then the port pin is an output. Otherwise it is

an input. Bit zero corresponds to Port B0.

Prototype

int dio40_gpio_b_dir_get(int fd, u32* dir);

DIO40, Linux Device Driver, User Manual

27

General Standards Corporation, Phone: (256) 880-8787

Argument Description

fd This is the file descriptor of the device to be accessed.

dir If non-NULL, the direction data is stored here.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.3.2. dio40_gpio_b_dir_mod()

This function performs a read-modify-write operation on the direction settings for the Port B pins. If a bit is set, then

the port pin is an output. Otherwise it is an input. Bit zero corresponds to Port B0.

Prototype

int dio40_gpio_b_dir_mod(int fd, u32 dir, u32 mask);

Argument Description

fd This is the file descriptor of the device to be accessed.

dir This is the direction data to apply.

mask These are the direction bits to modify. If a bit is set here, then the direction bit is modified. If

the bit is clear here, the direction bit is unaltered.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.3.3. dio40_gpio_b_dir_set()

This function updated the direction settings for the Port B pins. If a bit is set, then the port pin is an output.

Otherwise it is an input. Bit zero corresponds to Port B0.

Prototype

int dio40_gpio_b_dir_set(int fd, u32 dir);

Argument Description

fd This is the file descriptor of the device to be accessed.

dir This is the direction data to apply.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.3.4. dio40_gpio_b_in_get()

This function reads the input from the cable’s Port B pins. Bit zero corresponds to Port B0.

Prototype

int dio40_gpio_b_in_get(int fd, u32* data);

Argument Description

fd This is the file descriptor of the device to be accessed.

DIO40, Linux Device Driver, User Manual

28

General Standards Corporation, Phone: (256) 880-8787

data The data read is recorded here, if non-NULL.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.3.5. dio40_gpio_b_out_get()

This function retrieves what is recorded for output on the Port B pins. Bit zero corresponds to Port B0.

Prototype

int dio40_gpio_b_out_get(int fd, u32* data);

Argument Description

fd This is the file descriptor of the device to be accessed.

data If non-NULL, the data is stored here.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.3.6. dio40_gpio_b_out_mod()

This function performs a read-modify-write on what is recorded for output on the Port B pins. Bit zero corresponds

to Port B0.

Prototype

int dio40_gpio_b_out_mod(int fd, u32 data, u32 mask);

Argument Description

fd This is the file descriptor of the device to be accessed.

data This is the data to apply.

mask These are the data bits to modify. If a bit is set here, then the recorded bit is modified. If the

bit is clear here, the recorded bit is unaltered.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.3.7. dio40_gpio_b_out_set()

This function updates what is recorded for output on the Port B pins. Bit zero corresponds to Port B0.

Prototype

int dio40_gpio_b_out_set(int fd, u32 data);

Argument Description

fd This is the file descriptor of the device to be accessed.

data This is the data to apply.

DIO40, Linux Device Driver, User Manual

29

General Standards Corporation, Phone: (256) 880-8787

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.4. LED Services

The following services provide access to LEDs on the back of the DIO40.

5.4.1. dio40_led_get()

This function retrieves the state of the LEDs. If a bit is set, then the LED is on. Otherwise it is off.

Prototype

int dio40_led_get(int fd, u8* on);

Argument Description

fd This is the file descriptor of the device to be accessed.

on If non-NULL, the state data is stored here.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.4.2. dio40_led_mod()

This function performs a read-modify-write on the LEDs’ on/off state. If a bit is set, then the LED is on. Otherwise

it is off.

Prototype

int dio40_led_mod(int fd, u8 on, u8 mask);

Argument Description

fd This is the file descriptor of the device to be accessed.

on This is the data to apply.

mask These are the data bits to modify. If a bit is set here, then the LED bit is modified. If the bit

is clear here, the LED bit is unaltered.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.4.3. dio40_led_set()

This function updates what is on/off state of the LEDs. If a bit is set, then the LED is on. Otherwise it is off.

Prototype

int dio40_led_set(int fd, u8 on);

Argument Description

fd This is the file descriptor of the device to be accessed.

on This is the data to apply.

DIO40, Linux Device Driver, User Manual

30

General Standards Corporation, Phone: (256) 880-8787

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.5. Register Access Services

The following services provide access to the DIO40 registers.

5.5.1. dio40_reg_mod()

This function performs a read-modify-write on a specified DIO40 register. This applies to firmware registers only,

as all PCI and PLX registers are read-only.

Prototype

int dio40_reg_mod(int fd, u32 reg, u32 value, u32 mask);

Argument Description

fd This is the file descriptor of the device to be accessed.

reg This identifies the register to be read.

Value This is the value to apply.

mask These are the value bits to modify. If a bit is set here, then the register bit is modified. If the

bit is clear here, the register bit is unaltered.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.5.2. dio40_reg_read()

This function reads a specified DIO40 registers.

Prototype

int dio40_reg_read(int fd, u32 reg, u32* value);

Argument Description

fd This is the file descriptor of the device to be accessed.

reg This identifies the register to be read.

value If non-NULL, the value read is recorded here.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.5.3. dio40_reg_write()

This function updates the value of a specified register. This applies to firmware registers only, as all PCI and PLX

registers are read-only.

Prototype

int dio40_reg_write(int fd, u32 reg, u32 value);

DIO40, Linux Device Driver, User Manual

31

General Standards Corporation, Phone: (256) 880-8787

Argument Description

fd This is the file descriptor of the device to be accessed.

reg This identifies the register to be accessed.

value This is the value to apply.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.6. Additional Services

The following are additional miscellaneous services.

5.6.1. dio40_close()

This function closes an open connection to a DIO40.

Prototype

int dio40_close(int fd);

Argument Description

fd This is the file descriptor of the device to close.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.6.2. dio40_ioctl()

This function issues an IOCTL call for a connection to a DIO40.

Prototype

int dio40_ioctl(int fd, int request, void *arg);

Argument Description

fd This is the file descriptor of the device to access.

request This is the code for the service to perform. See section 4.4 starting on page 20.

arg This is the service specific argument.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

5.6.3. dio40_lib_version()

This function returns the library version number and build date and time.

Prototype

void dio40_lib_version(

 char* ver,

 size_t v_size,

DIO40, Linux Device Driver, User Manual

32

General Standards Corporation, Phone: (256) 880-8787

 char* built,

 size_t b_size);

Argument Description

ver The version number is returned her in the form of “X.X.X”.

v_size This is the size of the above buffer.

built The library build date and time is returned here in the C form of sprintf("%s, %s",

__DATE__, __TIME__).

b_size This is the size of the above buffer.

5.6.4. dio40_open()

This function opens a connection to a specified DIO40. The desired board is specified by the zero based index,

where the first board in the system is index zero.

Prototype

int dio40_open(int board);

Argument Description

board This is the index of the board to access.

Return Value Description

else The file descriptor to use as the operation succeeded.

-1 An error occurred. Refer to errno for the specific error condition.

5.6.5. dio40_reset()

This function reset the entire DIO40.

Prototype

int dio40_reset(int fd);

Argument Description

fd This is the file descriptor of the device to be accessed.

Return Value Description

0 The operation succeeded.

else The value from errno for the error that occurred.

DIO40, Linux Device Driver, User Manual

33

General Standards Corporation, Phone: (256) 880-8787

6. Operating Information

This section explains some basic operational procedures for using the DIO40. This is in no way intended to be a

comprehensive guide. This is simply to address a very few issues relating to their use.

No additional information is available at this time.

DIO40, Linux Device Driver, User Manual

34

General Standards Corporation, Phone: (256) 880-8787

7. Document Source Code Examples

The source code examples included in this document are built into a statically linkable library usable with console

applications. The purpose of these files is to verify that the documentation samples compile and to provide a library

of working sample code to assist in a user’s learning curve and application development effort.

7.1. Files

The library files are summarized in the table below.

File Description

docsrc/*.c These are the C source files.

docsrc/makefile This is the library make file.

docsrc/makefile.dep This is an automatically generated make dependency file.

docsrc/dio40_dsl.a This is the statically linkable library file.

docsrc/dio40_dsl.h This is the primary utility header file.

7.2. Build

The library is built via the Overall Make Script (section 2.7, page 11), but can be built separately following the

below steps.

1. Change to the directory where the documentation sources are installed (…/docsrc).

2. Remove all existing build targets by issuing the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make all

7.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the below

listed header file in each source file using a component of the library interface. At link time include the below listed

library file with the objects being linked with the application.

File Default Location

dio40_dsl.h /usr/src/linux/drivers/dio40/docsrc

dio40_dsl.a /usr/src/linux/drivers/dio40/docsrc

DIO40, Linux Device Driver, User Manual

35

General Standards Corporation, Phone: (256) 880-8787

8. Utility Source Code

The driver archive includes a body of utility services built into a statically linkable library that is usable with console

applications. The primary purpose of the services is both for code reuse in the sample applications and to provide

wrappers, mostly visual, around the driver’s IOCTL services. The aim of the visual wrappers is to facilitate

structured console output for the sample applications. An additional purpose of these utility services is to provide a

library of working sample code to assist in a user’s learning curve and application development effort.

8.1. Files

The library files are summarized in the table below.

File Description

utils/util_*.c These are device specific utility source files.

utils/gsc_*.c These are device and OS independent utility source files.

utils/os_*.c These are OS specific utility source files.

utils/makefile This is the library make file.

utils/makefile.dep This is an automatically generated make dependency file.

utils/dio40_utils.a This is the statically linkable library file.

utils/dio40_utils.h This is the primary utility header file.

8.2. Build

The library is built via the Overall Make Script (section 2.7, page 11), but can be built separately following the

below steps.

1. Change to the directory where the utility sources are installed (…/utils).

2. Remove all existing build targets by issuing the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make all

8.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the below

listed header file in each source file using a component of the library interface. At link time include the below listed

library file with the objects being linked with the application.

File Default Location

dio40_utils.h /usr/src/linux/drivers/dio40/utils

dio40_utils.a /usr/src/linux/drivers/dio40/utils

DIO40, Linux Device Driver, User Manual

36

General Standards Corporation, Phone: (256) 880-8787

9. Sample Applications

The driver archive includes a variety of sample and test applications. While they are provided without support and

without any external documentation, any problems reported will be addressed as time permits. The applications are

command line based and produce text output for display on a console. All of the applications are built via the

Overall Make Script, but each may be built individually by changing to its respective directory and issuing the

commands “make clean” and “make all”. The initial output from each application includes information on its

supported command line arguments. The following gives a brief overview of each application.

9.1. din - Digital Input

This application reads the cable’s digital I/O signals and reports the values read to the console.

9.2. dout - Digital Output - …/dout/

This application writes a pattern to the cable’s digital output lines as it is displayed to the console.

9.3. led – LED Exerciser - …/led/

This application exercises the board LEDs.

9.4. sbtest - Single Board Test - …/sbtest/

This application performs functional testing of the driver and a user specified board, at least to the extent possible

with just a single board and no additional equipment.

DIO40, Linux Device Driver, User Manual

37

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

December 7, 2016 Updated to release version 3.0.68.18.0. Updated the device node name to include a period

before the device index. Removed double underscore that prefaced various data types.

Removed the built field from the /proc file. Updated the kernel support table. Updated

material on the open call. Added open access mode descriptions. Added a section for

general operating information. Made various miscellaneous updates. Some document

reorganization.

October 16, 2014 Updated to version 2.0.57.0. Updated the kernel support table. Modified driver interface.

Renamed data structure dio40_reg_t to gsc_reg_t. Deleted data structure

dio40_driver_info_t and IOCTL service DIO40_IOCTL_DRIVER_INFO_GET.

November 18, 2013 Updated to version 1.2.50.0. Various editorial changes. Updated the CPU and Kernel

Support information. Changed the name of the application rx to din. Changed the name of

the application tx to dout. Pre-built targets are no longer provided. Updated the CPU

support data.

August 29, 2006 Updated to version 1.01.0. Updated to support the 64-bit kernels and more recent 2.6

kernels.

April 7, 2006 Initial release.

