
DIO24
24-bit Discrete Digital I/O

All Form Factors
…-DIO24

Linux Driver
User Manual

Manual Revision: May 4, 2023

Version 9.8.104.47.1

General Standards Corporation

8302A Whitesburg Drive

Huntsville, AL 35802

Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

DIO24, Linux Driver User Manual

2

General Standards Corporation, Phone: (256) 880-8787

Preface

Copyright © 2013-2023, General Standards Corporation

Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com

E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or

software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Although extensive editing and reviews are performed before release, General Standards Corporation assumes no

responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are

made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this

documentation.

General Standards Corporation does not assume any liability arising out of the application or use of

documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or

any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or

errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,

software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

http://www.generalstandards.com/
mailto:sales@generalstandards.com

DIO24, Linux Driver User Manual

3

General Standards Corporation, Phone: (256) 880-8787

Table of Contents

1. Introduction ... 6

1.1. Purpose.. 6

1.2. Acronyms .. 6

1.3. Definitions .. 6

1.4. Software Overview ... 6
1.4.1. Basic Software Architecture ... 6
1.4.2. API Library ... 7
1.4.3. Device Driver ... 7

1.5. Hardware Overview .. 7

1.6. Reference Material .. 7

1.7. Licensing ... 8

2. Installation ... 9

2.1. CPU and Kernel Support... 9
2.1.1. 32-bit Support Under 64-bit Environments .. 10

2.2. The /proc/ File System .. 10

2.3. File List ... 10

2.4. Directory Structure .. 10

2.5. Installation .. 11

2.6. Removal .. 11

2.7. Overall Make Script .. 11

2.8. Environment Variables ... 12
2.8.1. GSC_API_COMP_FLAGS .. 12
2.8.2. GSC_API_LINK_FLAGS .. 12
2.8.3. GSC_LIB_COMP_FLAGS .. 12
2.8.4. GSC_LIB_LINK_FLAGS .. 13
2.8.5. GSC_APP_COMP_FLAGS .. 13
2.8.6. GSC_APP_LINK_FLAGS .. 13

3. Main Interface Files .. 14

3.1. Main Header File .. 14

3.2. Main Library File .. 14
3.2.1. Build ... 14
3.2.2. System Libraries ... 15

4. API Library ... 16

4.1. Files ... 16

4.2. Build ... 16

4.3. Library Use ... 16

4.4. Macros .. 16

DIO24, Linux Driver User Manual

4

General Standards Corporation, Phone: (256) 880-8787

4.5. Data Types .. 17

4.6. Functions ... 17

4.7. IOCTL Services .. 17

5. The Driver.. 18

5.1. Files ... 18

5.2. Build ... 18

5.3. Startup ... 18
5.3.1. Manual Driver Startup Procedures ... 18
5.3.2. Automatic Driver Startup Procedures ... 19

5.4. Verification ... 20

5.5. Version .. 21

5.6. Shutdown .. 21

6. Document Source Code Examples ... 22

6.1. Files ... 22

6.2. Build ... 22

6.3. Library Use ... 22

7. Utilities Source Code... 23

7.1. Files ... 23

7.2. Build ... 23

7.3. Library Use ... 23

8. Operating Information ... 24

9. Sample Applications ... 25

9.1. b2btest – Board-to-Board Test - …/b2btest/ ... 25

9.2. din - Digital Input - …/din/ ... 25

9.3. id - Identification - …/id/ .. 25

9.4. irq - Interrupt - …/irq/ ... 25

9.5. regs - Register Access - …/regs/ ... 25

9.6. dout – Digital Output - …/dout/ .. 25

Document History ... 26

DIO24, Linux Driver User Manual

5

General Standards Corporation, Phone: (256) 880-8787

Table of Figures

Figure 1 Basic architectural representation.. 7

DIO24, Linux Driver User Manual

6

General Standards Corporation, Phone: (256) 880-8787

1. Introduction

1.1. Purpose

The purpose of this document is to describe the Linux specific aspects of the DIO24 API Library and underlying

Linux device driver. The API Library software provides the interface between "Application Software" and the

device driver. The driver software provides the interface between the API Library and the actual DIO24 hardware.

The API Library and driver interfaces are based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms Description

API Application Programming Interface

DIO Digital I/O

GSC General Standards Corporation

PCI Peripheral Component Interconnect

PMC PCI Mezzanine Card

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

… This is a shortcut representation of the DIO24 installation directory or any of its subdirectories.

API Library This is a library that provides application-level access to DIO24 hardware.

Application This is a user mode process, which runs in user space with user mode privileges.

DIO24 This is used as a general reference to any board supported by this driver.

Driver This is the DIO24 device driver, which runs in kernel space with kernel mode privileges.

Library This is usually a general reference to the API Library.

1.4. Software Overview

1.4.1. Basic Software Architecture

This section describes the general architecture for the basic components that comprise DIO24 applications. The

overall architecture is illustrated in Figure 1 below.

DIO24, Linux Driver User Manual

7

General Standards Corporation, Phone: (256) 880-8787

DIO24

Device Driver

dio24.ko or

dio24.o

DIO24

API Library
libdio24_api.so

dio24_init()

dio24_open()

dio24_close()

dio24_ioctl()

dio24_read()

/proc/dio24 Informational

/dev/dio24.0 Device 0

/dev/dio24.1 Device 1

/dev/dio24.X Device X

...
DIO24

Boards

DIO24

Application

Hardware Level

Kernel Level

Application Level

Figure 1 Basic architectural representation.

1.4.2. API Library

The primary means of accessing DIO24 boards is via the DIO24 API Library. This library forms a layer between the

application and the driver. Additional information is given in section 4 (page 16). With the library, applications are

able to open and close a device and, while open, perform I/O control and read operations.

1.4.3. Device Driver

The device driver is the host software that provides a means of communicating directly with DIO24 hardware. The

driver executes under control of the operating system and runs in Kernel Mode as a Kernel Mode device driver. The

driver is implemented as a standard dynamically loadable Linux device driver written in the C programming

language. While applications can access the driver directly without use of the API Library, it is recommended that

all access is made through the library.

1.5. Hardware Overview

The DIO24 is a simple 24 discrete I/O interface board. The host side connection is PCI based and the external I/O

varies with the transceivers ordered. The external interface includes 24 pins that can be arbitrarily programmed as

either input or output. The 24 programmable pins are divided into three groups of eight pins each; Port A, Port B and

Port C. Ports A and B are each programmable as all inputs or all outputs. The Port C pins are individually

programmable. Each of the 24 I/O pins can also be configured to generate an interrupt on rising and/or falling edges.

Depending on ordering options, the cable interface may include a 25th dedicated input or a reference ground

connection.

1.6. Reference Material

The following reference material may be of particular benefit in using the DIO24. The specifications provide the

information necessary for an in depth understanding of the specialized features implemented on this board.

• The applicable DIO24 User Manual from General Standards Corporation.

• The PCI9080 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

DIO24, Linux Driver User Manual

8

General Standards Corporation, Phone: (256) 880-8787

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA

Phone: 1-800-759-3735

WEB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE.txt in the root installation directory.

http://www.plxtech.com/

DIO24, Linux Driver User Manual

9

General Standards Corporation, Phone: (256) 880-8787

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 6.x, 5.x, 4.x, 3.x, 2.6, 2.4 and 2.2 running on a PC

system with one or more x86 processors. This release of the driver supports the below listed kernels.

Kernel Distribution

6.0.7 Red Hat Fedora Core 37

5.17.5 Red Hat Fedora Core 36

5.14.10 Red Hat Fedora Core 35

5.11.12 Red Hat Fedora Core 34

5.8.15 Red Hat Fedora Core 33

5.6.6 Red Hat Fedora Core 32

5.3.7 Red Hat Fedora Core 31

5.0.9 Red Hat Fedora Core 30

4.18.16 Red Hat Fedora Core 29

4.16.3 Red Hat Fedora Core 28

4.13.9 Red Hat Fedora Core 27

4.11.8 Red Hat Fedora Core 26

4.8.6 Red Hat Fedora Core 25

4.5.5 Red Hat Fedora Core 24

4.2.3 Red Hat Fedora Core 23

4.0.4 Red Hat Fedora Core 22

3.17.4 Red Hat Fedora Core 21

3.11.10 Red Hat Fedora Core 20

3.9.5 Red Hat Fedora Core 19

3.6.10 Red Hat Fedora Core 18

3.3.4 Red Hat Fedora Core 17

3.1.0 Red Hat Fedora Core 16

2.6.38 Red Hat Fedora Core 15

2.6.35 Red Hat Fedora Core 14

2.6.33 Red Hat Fedora Core 13

2.6.31 Red Hat Fedora Core 12

2.6.29 Red Hat Fedora Core 11

2.6.27 Red Hat Fedora Core 10

2.6.25 Red Hat Fedora Core 9

2.6.23 Red Hat Fedora Core 8

2.6.21 Red Hat Fedora Core 7

2.6.18 Red Hat Fedora Core 6

2.6.15 Red Hat Fedora Core 5

2.6.11 Red Hat Fedora Core 4

2.6.9 Red Hat Fedora Core 3

NOTE: Some older kernel versions are supported (the sources are maintained), but are not tested.

NOTE: While only Red Hat Fedora distributions are listed, numerous other distributions are

supported and have been tested on an as needed basis.

NOTE: The driver will have to be built before being used as it is provided in source form only.

DIO24, Linux Driver User Manual

10

General Standards Corporation, Phone: (256) 880-8787

NOTE: The driver has not been tested with a non-versioned kernel.

NOTE: The driver is designed for SMP support, but has not undergone SMP specific testing.

2.1.1. 32-bit Support Under 64-bit Environments

This driver supports 32-bit applications under 64-bit environments. The availability of this feature in the kernel

depends on a 64-bit kernel being configured to support 32-bit application compatibility. Additionally, 2.6 kernels

prior to 2.6.11 implemented 32-bit compatibility in a way that resulted in some drivers not being able to take

advantage of the feature. (In these kernels a driver’s IOCTL command codes must be globally unique. Beginning

with 2.6.11 this requirement has been lifted.) If the driver is not able to provide 32-bit support under a 64-bit kernel,

the “32-bit support” field in the /proc/dio24 file will be “no”.

2.2. The /proc/ File System

While the driver is running, the text file /proc/dio24 can be read to obtain information about the driver and the

boards it detects. Each file line includes an entry name followed immediately by a colon, a space character, and the

entry value. Below is an example of what appears in the file, followed by descriptions of each entry.

version: 9.8.104.47

32-bit support: yes

boards: 1

models: DIO24

ids: 0x3

Entry Description

version This gives the driver version number in the form x.x.x.x.

32-bit support
This reports the driver’s support for 32-bit applications. This will be either “yes” or

“no” for 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.

models

This gives a comma separated list of the basic model number for each board the driver

detected. The model numbers are listed in the same order that the boards are accessed via

the API Library’s open function. For this driver all model numbers should be DIO24.

ids

This is a comma separated list identifying the values read from the boards’ user jumpers.

The options are “0x0” through “0xF” and “none”. The id numbers are listed in the

same order that the boards are accessed via the API Library’s open function.

2.3. File List

This release consists of the below listed primary files. The archive content is described in following subsections.

File Description
dio24.linux.tar.gz This archive contains the driver, the API Library and all related files.
dio24_api_rm.pdf This is a PDF version of the DIO24 API Library Reference Manual.
dio24_linux_um.pdf This is a PDF version of this user manual, which is included in the archive.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory

structure is created and populated with the respective files.

Directory Description

dio24/
This is the driver root directory. It contains the documentation, the Overall Make Script (section

2.7, page 11) and the below listed subdirectories.

DIO24, Linux Driver User Manual

11

General Standards Corporation, Phone: (256) 880-8787

…/api/ This directory contains the DIO24 API Library (section 4, page 16).
…/docsrc/ This directory contains the code samples from the reference manual (section 6, page 22).
…/driver/ This directory contains the driver and its sources (section 5, page 18).
…/include/ This directory contains the header files for the various libraries.
…/lib/ This directory contains all of the libraries built from the driver archive.
…/samples/ This directory contains the sample applications (section 9, page 25).
…/utils/ This directory contains utility sources used by the sample applications (section 7, page 23).

2.5. Installation

Perform installation following the below listed steps. This installs the device driver, the API Library and all related

sources and documentation.

1. Create and change to the directory where the files are to be installed, such as /usr/src/linux/drivers/.

(The path name may vary among distributions and kernel versions.)

2. Copy the archive file dio24.linux.tar.gz into the current directory.

3. Issue the following command to decompress and extract the files from the provided archive. This creates the

directory dio24 in the current directory, and then copies all of the archive’s files into this new directory.

tar –xzvf dio24.linux.tar.gz

2.6. Removal

Perform removal following the below listed steps. This removes the device driver, the API Library and all related

sources and documentation.

NOTE: The following steps may require elevated privileges.

1. Shutdown the driver as described in section 5.6 (page 21).

2. Change to the directory where the driver archive was installed, which may have been

/usr/src/linux/drivers/. (The path name may vary among distributions and kernel versions.)

3. Issue the below command to remove the driver archive and all of the installed driver files.

rm –rf dio24.linux.tar.gz dio24

4. Issue the below command to remove all of the installed device nodes.

rm -f /dev/dio24.*

5. If the automated startup procedure was adopted (section 5.3.2, page 19), then edit the system startup script

rc.local and remove the line that invokes the DIO24’s start script. The file rc.local should be located

in the /etc/rc.d/ directory.

2.7. Overall Make Script

An Overall Make Script is included in the root installation directory. Executing this script will perform a make for

all build targets included in the release. The script also loads the driver and copies the API Library to /usr/lib/.

The script is named make_all. Follow the below steps to perform an overall make and to load the driver.

NOTE: The following steps may require elevated privileges.

DIO24, Linux Driver User Manual

12

General Standards Corporation, Phone: (256) 880-8787

1. Change to the driver root directory (…/dio24/).

2. Remove existing build targets using the below command. This does not unload the driver.

./make_all clean

3. Issue the following command to make all archive targets and to load the driver.

./make_all

2.8. Environment Variables

Some build environments may require compiler or linker options not present in the provided make files. To

accommodate local environment specific requirements, the provided make files incorporate support for the

following set of GSC specific environment variables.

2.8.1. GSC_API_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the API Library. The compiler used by the API Library make file is “gcc”. The content of this environment variable

is noted in the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in

the table refers to the contents of the environment variable. This environment variable has no effect on compiling

any other distributed source files or linking of any object files.

Undefined

or Empty

== Compiling: init.c

== Compiling: ioctl.c

== Compiling: open.c

Defined and

Not Empty

== Compiling: init.c (added 'xxx')

== Compiling: ioctl.c (added 'xxx')

== Compiling: open.c (added 'xxx')

2.8.2. GSC_API_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the API

Library. The linker used by the API Library make file is “ld”. The content of this environment variable is noted in

the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in the table

refers to the contents of the environment variable. This environment variable has no effect on compiling of any

source files or linking of any other object files.

Undefined

or Empty
==== Linking: ../lib/libdio24_api.so

Defined and

Not Empty
==== Linking: ../lib/libdio24_api.so (added 'xxx')

2.8.3. GSC_LIB_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the utility libraries. The compiler used by the utility library make files is “gcc”. The content of this environment

variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The

“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on

compiling any other distributed source files or linking of any object files.

DIO24, Linux Driver User Manual

13

General Standards Corporation, Phone: (256) 880-8787

Undefined

or Empty

== Compiling: close.c

== Compiling: init.c

== Compiling: ioctl.c

Defined and

Not Empty

== Compiling: close.c (added 'xxx')

== Compiling: init.c (added 'xxx')

== Compiling: ioctl.c (added 'xxx')

2.8.4. GSC_LIB_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the

utility libraries. The linker used by the utility library make files is “ld”. The content of this environment variable is

noted in the make files’ output to the screen. The table below shows a portion of the screen output. The “xxx” in the

table refers to the contents of the environment variable. This environment variable has no effect on compiling of any

source files or linking of any other object files.

Undefined

or Empty
==== Linking: ../lib/dio24_utils.a

Defined and

Not Empty
==== Linking: ../lib/dio24_utils.a (added 'xxx')

2.8.5. GSC_APP_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for

the sample applications. The compiler used by the sample application make files is “gcc”. The content of this

environment variable is noted in the make files’ output to the screen. The table below shows a portion of the screen

output. The “xxx” in the table refers to the contents of the environment variable. This environment variable has no

effect on compiling any other distributed source files or linking of any object files.

Undefined

or Empty

== Compiling: main.c

== Compiling: perform.c

Defined and

Not Empty

== Compiling: main.c (added 'xxx')

== Compiling: perform.c (added 'xxx')

2.8.6. GSC_APP_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the

sample applications. The linker used by the sample application make files is “gcc”. The content of this environment

variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The

“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on

compiling of any source files or linking of any other object files.

Undefined

or Empty
==== Linking: id

Defined and

Not Empty
==== Linking: id (added 'xxx')

DIO24, Linux Driver User Manual

14

General Standards Corporation, Phone: (256) 880-8787

3. Main Interface Files

This section gives general information on the suggested device interface files to use when developing DIO24 based

applications.

3.1. Main Header File

Throughout the remainder of this document references are made to various header files included as part of the

DIO24 driver archive. For ease of use it is suggested that applications include only the single header file shown

below rather than individually including those headers identified separately later in this document. Including this

header file pulls in all other pertinent DIO24 specific header files. Therefore, sources may include only this one

DIO24 header and make files may reference only this one DIO24 include directory.

Description File Location

Header File dio24_main.h …/include/

3.2. Main Library File

Throughout the remainder of this document references are made to various statically linkable libraries included as

part of the DIO24 driver archive. For ease of use it is suggested that applications link only the single library file

shown below rather than individually linking those libraries identified separately later in this document. Linking this

library file pulls in all other pertinent DIO24 specific static libraries. Therefore, make files may reference only this

one DIO24 static library and only this one DIO24 library directory.

Description File Location

Static Library
dio24_main.a

…/lib/
dio24_multi.a

NOTE: For applications using the DIO24 and no other GSC devices, link the dio24_main.a

library. For applications using multiple GSC device types, link the xxxx_main.a library for one

of the devices and the xxxx_multi.a library for the others. Linking multiple xxxx_main.a

libraries may likely produce link errors due to duplicate symbols being defined. While it may

make little or no difference, it is recommended that one choose the xxxx_main.a library from

the driver with the largest number in positions three (x.x.X.x.x) and/or four (x.x.x.X.x) in the

driver release version number.

NOTE: The DIO24 API Library is implemented as a shared library and is thus not linked with the

DIO24 Main Library. The API Library must be linked with applications by adding the argument –

ldio24_api to the linker command line.

3.2.1. Build

The main library is built via the Overall Make Script (section 2.7, page 11). However, the main library can be rebuilt

separately following the below steps.

1. Change to the directory where the main library resides (…/lib/).

2. Remove existing build targets using the below command.

make clean

3. Rebuild the main library by issuing the below command.

make

DIO24, Linux Driver User Manual

15

General Standards Corporation, Phone: (256) 880-8787

3.2.2. System Libraries

In addition to linking the static library named above, as well as the API Library shared object file, applications may

need to also link in additional system libraries as noted below.

Library gcc Link Flag

Math -lm

POSIX Thread -lpthread

Real Time -lrt

DIO24, Linux Driver User Manual

16

General Standards Corporation, Phone: (256) 880-8787

4. API Library

The DIO24 API Library is the software interface between user applications and the DIO24 device driver. The

interface is accessed by including the header file dio24_api.h.

NOTE: Contact General Standards Corporation if additional library functionality is required.

4.1. Files

The library files are summarized in the table below.

Description File Location

Source Files *.c, *.h, makefile … …/api/

Header File dio24_api.h …/include/

Library File dio24_api.so
…/lib/

/usr/lib/ *

* The shared object library is automatically copied to /usr/lib/ when it is built.

4.2. Build

The API Library is built via the Overall Make Script (section 2.7, page 11), but can be built separately following the

below steps.

NOTE: The API Library shared library is copied to /usr/lib/. Therefore, these steps may

require elevated privileges.

1. Change to the directory where the library sources are installed (…/api/).

2. Remove existing build targets using the below command.

make clean

3. Compile the source files and build the library by issuing the below command.

make

4.3. Library Use

The library is used at application compile time, at application link time and at application run time. At compile time

include the below listed header file in each source file using a component of the Library interface. Also, edit the

include file search path to locate the header file in the below listed directory. At link time the Library’s shared object

file is linked via the linker command line. This can be done by naming the .so file explicitly or by adding the below

linker command line argument. At run time the library is found in the directory /usr/lib/. (The shared object

file is automatically copied to /usr/lib/ when it is built.)

Description File Location Linker Argument

Header File dio24_api.h …/include/

Shared Object Library libdio24_api.so
…/lib/

/usr/lib/ -ldio24_api

4.4. Macros

For detailed macro information refer to this same section number in the DIO24 API Library Reference Manual.

DIO24, Linux Driver User Manual

17

General Standards Corporation, Phone: (256) 880-8787

4.5. Data Types

For detailed data type information refer to this same section number in the DIO24 API Library Reference Manual.

4.6. Functions

For detailed function information refer to this same section number in the DIO24 API Library Reference Manual.

4.7. IOCTL Services

For detailed IOCTL information refer to this same section number in the DIO24 API Library Reference Manual.

DIO24, Linux Driver User Manual

18

General Standards Corporation, Phone: (256) 880-8787

5. The Driver

NOTE: Contact General Standards Corporation if additional driver functionality is required.

5.1. Files

The device driver files are summarized in the table below.

Description Files Location

Source Files *.c, *.h, Makefile …

…/driver/
Header File dio24.h

Driver File
dio24.ko †

dio24.o ‡

† This is for kernel versions 2.6 and later.

‡ This is for kernel versions 2.4 are earlier.

5.2. Build

NOTE: Building the driver requires installation of the kernel headers.

The device driver is built via the Overall Make Script (section 2.7, page 11), but can be built separately following

the below steps.

1. Change to the directory where the driver and its sources are installed (…/driver/).

2. Remove existing build targets by issuing the below command.

make clean

3. Build the driver by issuing the below command.

make

NOTE: Due to the differences between the many Linux distributions some build errors may

occur. These errors may include system header location differences, which should be easily

corrected.

5.3. Startup

NOTE: The driver will have to be built before being used as it is provided in source form only.

The startup script used in this procedure is designed to load the device driver and create fresh device nodes. This is

accomplished by unloading the current driver, if loaded, and then loading the accompanying device driver. In

addition, the script deletes and recreates the device nodes. This is done to ensure that the device nodes in use have

the same major number as assigned dynamically to the driver by the kernel, and so that the number of device nodes

corresponds to the number of boards identified by the driver.

5.3.1. Manual Driver Startup Procedures

Start the driver manually by following the below listed steps.

NOTE: The following steps may require elevated privileges.

DIO24, Linux Driver User Manual

19

General Standards Corporation, Phone: (256) 880-8787

1. Change to the directory where the driver sources are installed (…/driver/).

2. Install the driver module and create the device nodes by executing the below command. If any errors are

encountered then an appropriate error message will be displayed.

./start

NOTE: This script must be executed each time the host is rebooted.

NOTE: The DIO24 device node major number is assigned dynamically by the kernel. The minor

numbers and the device node suffix numbers are index numbers beginning with zero, and increase

by one for each additional board installed.

3. Verify that the device driver module has been loaded by issuing the below command and examining the output.

The module name dio24 should be included in the output.

lsmod

4. Verify that the device nodes have been created by issuing the below command and examining the output. The

output should include one node for each installed board.

ls –l /dev/dio24.*

5.3.2. Automatic Driver Startup Procedures

Start the driver automatically with each system reboot by following the below listed steps.

1. Locate and edit the system startup script rc.local, which should be in the /etc/rc.d/ directory. Modify

the file by adding the below line so that it is executed with every reboot. The example is based on the driver

being installed in /usr/src/linux/drivers/, though it may have been installed elsewhere.

/usr/src/linux/drivers/dio24/driver/start

NOTE: For systemd installations the file rc.local may be located under the /etc/

directory rather than under /etc/rc.d/.

2. Load the driver and create the required device nodes by rebooting the system.

3. Verify that the driver is loaded and that the device nodes have been created. Do this by following the

verification steps given in the manual startup procedures.

5.3.2.1. File rc.local Not Present

Some distributions may not install a default version of rc.local. Some may not even create the directory

/etc/rc.d/. If the directory is not present, then it may be created. The directory must be created with the owner

and group set to root. The directory permissions must be set to rwxr-xr-x. If the file /etc/rc.d/rc.local

is not present, then it too may be created. The file must also be created with the owner and group set to root.

Additionally, the file permissions must also be set to rwxr-xr-x. After the directory and file are created as

described, reboot to verify boot time loading of the driver. Here is an example of a default version of rc.local.

#!/bin/bash

Add your local content here.

DIO24, Linux Driver User Manual

20

General Standards Corporation, Phone: (256) 880-8787

5.3.2.2. Default rc.local File Permissions

The rc.local script may fail to run at boot time because some distributions install a default version of the file

without execute permissions. Without execute permissions, boot time invocation of the script fails, which inhibits

boot time loading of the driver. If this is the case, then change the file permissions to rwxr-xr-x. After the file

permissions are adjusted as described, reboot to verify boot time loading of the driver.

5.3.2.3. systemd Installations

With the advent of the systemd startup implementation, rc.local may be accessed via a systemd startup

service. The service name may be rc-local, rc-local.service or something similar. This service may or

may not be enabled by default. If the service is disabled, then the script will not execute, which prevents boot time

loading of the driver. The service can be enabled with the below command line. After the service is enabled, reboot

to verify boot time loading of the driver.

systemctl enable rc-local

NOTE: For systemd installations the file rc.local may be located under the /etc/

directory rather than under /etc/rc.d/.

5.3.2.4. systemd and rc.local Timing

If the above steps have been performed but the driver still does not start then examine the dmesg output for driver

messages. If the output shows that the driver starts and immediately stops, then the problem may be timing. That is,

since systemd doesn’t serialize startup initialization as done in the past, driver loading may fail if required services

have not completed their own initialization. If this is the problem, then it may be corrected simply by inserting a

delay in rc.local prior to it calling the driver’s start script (i.e., sleep for one or more seconds).

5.3.2.5. SElinux Implications

If not disabled, then SElinux may prevent boot time loading of the driver. If this is the case, then it can be verified

and corrected using SElinux related tools and utilities. First, install the necessary software using the below

command. (As necessary, replace the yum command line with that which is available for your distribution.)

yum install setroubleshoot setools

Next, run the below command to determine if SElinux is preventing the driver from loading at boot time.

sealert –a /var/log/audit/audit.log

If SElinux is preventing the driver from loading, then the output from the above command should include a

reference to the driver’s start script, the insmod command that loads the driver or the name of the driver

executable. If so, then the output should also indicate the commands necessary to resolve the issue. The following is

an example of the instructions given when the culprit is insmod, which is the start script command that loads the

driver. After running these commands reboot the system to verify boot time loading of the driver.

ausearch -c 'insmod' --raw | audit2allow -M my-insmod

semodule -X 300 -i my-insmod.pp

5.4. Verification

Follow the below steps to verify that the driver has been properly installed and started.

DIO24, Linux Driver User Manual

21

General Standards Corporation, Phone: (256) 880-8787

1. Verify that the file /proc/dio24 is present. If the file is present then the driver is loaded and running. Verify

the file’s presence by viewing its content with the below command.

cat /proc/dio24

5.5. Version

The driver version number can be obtained in a variety of ways. It is reported by the driver both when the driver is

loaded and when it is unloaded (depending on kernel configuration options, this may be visible only in places such

as /var/log/messages). It is reported in the text file /proc/dio24 while the driver is loaded and running.

The version number is also given in the file release.txt in the root install directory.

5.6. Shutdown

Shutdown the driver following the below listed steps.

NOTE: The following steps may require elevated privileges.

1. If the driver is currently loaded then issue the below command to unload the driver.

rmmod dio24

2. Verify that the driver module has been unloaded by issuing the below command. The module name dio24

should not be in the listed output.

lsmod

DIO24, Linux Driver User Manual

22

General Standards Corporation, Phone: (256) 880-8787

6. Document Source Code Examples

The source code examples included in the DIO24 API Library Reference Manual are built into a statically linkable

library usable with console applications. The purpose of these files is to verify that the documentation samples

compile and to provide a library of working sample code to assist in a user’s learning curve and application

development effort.

6.1. Files

The library files are summarized in the table below.

Description Files Location

Source Files *.c, *.h, makefile … …/docsrc/

Header File dio24_dsl.h …/include/

Library File dio24_dsl.a …/lib/

6.2. Build

The library is built via the Overall Make Script (section 2.7, page 11), but can be built separately following the

below steps.

1. Change to the directory where the documentation sources are installed (…/docsrc/).

2. Remove existing build targets by issuing the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make

4. Rebuild the Main Library (section 3.2.1, page 14).

6.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above

listed header file in each source file using a component of the library interface. At link time include the above listed

static library file with the objects being linked with the application.

DIO24, Linux Driver User Manual

23

General Standards Corporation, Phone: (256) 880-8787

7. Utilities Source Code

The driver archive includes a body of utility source code designed to aid in the understanding and use of the API

calls and the IOCTL services. The utility services provide wrappers, mostly visual, around the respective services.

Utility sources are also included for device independent and common, general-purpose services. The aim of all the

visual wrappers is to facilitate structured console output for the sample applications. The utility services are used

extensively by the sample applications. An additional purpose of these utility services is to provide a library of

working sample code to assist in a user’s learning curve and application development effort. For additional

information refer to the DIO24 API Library Reference Manual.

7.1. Files

The utility files are summarized in the table below.

Description Files Location

Source Files *.c, *.h, makefile … …/utils/

Header File dio24_utils.h …/include/

Library Files

dio24_utils.a

gsc_utils.a

os_utils.a

plx_utils.a

…/lib/

7.2. Build

The libraries are built via the Overall Make Script (section 2.7, page 11), but can be built separately following the

below steps.

1. Change to the directory where the utility sources are installed (…/utils/).

2. Remove existing build targets by issuing the below command.

make clean

3. Compile the sample files and build the library by issuing the below command.

make

4. Rebuild the Main Library (section 3.2.1, page 14).

7.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the above

listed header file in each source file using a component of the library interface. At link time include the above listed

static library file with the objects being linked with the application.

DIO24, Linux Driver User Manual

24

General Standards Corporation, Phone: (256) 880-8787

8. Operating Information

For operating information refer to this same section number in the DIO24 API Library Reference Manual.

DIO24, Linux Driver User Manual

25

General Standards Corporation, Phone: (256) 880-8787

9. Sample Applications

The driver archive includes a variety of sample and test applications located under the samples subdirectory.

While they are provided without support and without any external documentation, any problems reported will be

addressed as time permits. The applications are command line based and produce text output for display on a

console. All of the applications are built via the Overall Make Script (section 2.7, page 11), but each may be built

individually by changing to its respective directory and issuing the commands “make clean” and “make”. The

initial output from each application includes information on its supported command line arguments. The following

gives a brief overview of each application.

9.1. b2btest – Board-to-Board Test - …/b2btest/

This application performs a test of the configurable GPIO cable interface signals to verify the input and output of

two boards connected back-to-back.

9.2. din - Digital Input - …/din/

This application configures the board for input operation then monitors the cable inputs. Changing input signal

values are reported to the console. This is done for roughly 10 seconds.

9.3. id - Identification - …/id/

This application reports detailed board identification information. This can be used with tech support to help identify

as much technical information about the board as possible from software.

9.4. irq - Interrupt - …/irq/

This application performs a test of each of the board’s interrupt sources.

9.5. regs - Register Access - …/regs/

This application provides menu based interactive access to the board’s registers, and reports other pertinent

information to the console.

9.6. dout – Digital Output - …/dout/

This application configures the board for output operation then exercises the outputs. This is done by moving a “1”

bit across the outputs followed by the same for a “0” bit.

DIO24, Linux Driver User Manual

26

General Standards Corporation, Phone: (256) 880-8787

Document History

Revision Description

May 4, 2023 Updated to version 9.8.104.47.1.

May 4, 2023
Updated to version 9.8.104.47.0. Updated the kernel support table. Numerous editorial

changes.

December 15, 2022 Updated to version 9.7.101.44.1. Minor editorial updates.

November 23, 2022 Updated to version 9.7.101.44.0. Minor editorial updates.

October 3, 2022
Updated to version 9.6.101.42.0. Expanded automatic startup information. Updated the

kernel support table. Added section on environment variables. Discontinued the SDK.

March 9, 2021 Updated to version 9.5.93.36.1.

March 5, 2021

Updated to version 9.5.93.36.0. Updated the kernel support table. Minor editorial changes.

Added the Clock Counter and Latch IOCTL services. Added WAIT_EVENT note.

Expanded automatic startup information. Split document between Linux Driver user

Manual and API Reference Manual. Added SDK discontinuation notice.

August 7, 2019
Updated to version 9.5.87.28.0. Updated the kernel support table. Minor editorial changes.

Added a licensing subsection.

May 22, 2019
Updated to version 9.4.85.27.0. Added query options, interrupt IOCTL services and wait

event IOCTL services.

May 17, 2019

Updated to version 9.3.85.27.0. Updated the inside cover page. Updated the CPU and

kernel support section. Minor editorial changes. Document reorganization. Added a

software architecture figure.

August 31, 2017
Updated to version 9.2.71.20.2. Minor editorial changes. Added the dio24_init()

service.

August 29, 2017 Updated to version 9.2.71.20.1. Renamed the walk application to dout.

August 29, 2017

Updated to version 9.2.71.20.0. Reorganized some content. Redefined the primary device

interface. Added IOCTL services, an API Library and header file, and main header and

library files.

December 5, 2016

Updated to version 9.1.68.18.0. Removed the built field from the /proc/ file. Updated

the kernel support table. Added the walk sample application. Updated material on the open

call. Added open access mode descriptions. Added a section for general operating

information. Made various miscellaneous updates. Some document reorganization.

September 16, 2015
Updated to version 9.0.60.8.0. Removed double underscore that prefaced various data

types.

October 16, 2014 Updated to version 8.1.57.0.

February 28, 2014 Updated to version 8.1.52.0. Updated the kernel support table.

January 9, 2014 Updated to version 8.0.51.0.

November 8, 2013 Updated to version 8.0.48.0. Changed all SDK references to API Library.

July 2, 2013
This is the initial release based on this driver. This driver uses the common code sources

rather than the SDK sources.

