	XMC-16AI632SSC1M

	16-Bit, 32 Channel

Simultaneous Sampling Analog Input

	Windows Vista\Win7 Driver

User Manual

	Manual Revision: February 7, 2017

	General Standards Corporation
8302A Whitesburg Drive
Huntsville, AL 35802
Phone: (256) 880-8787

Fax: (256) 880-8788

URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com

Preface

Copyright ©2017, General Standards Corporation
Additional copies of this manual or other literature may be obtained from:

General Standards Corporation

8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com
General Standards Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Although extensive editing and reviews are performed before release to ECO control, General Standards Corporation assumes no responsibility for any errors that may exist in this document. No commitment is made to update or keep current the information contained in this document.

General Standards Corporation does not assume any liability arising out of the application or use of any product or circuit described herein, nor is any license conveyed under any patent rights or any rights of others.
General Standards Corporation assumes no responsibility for any consequences resulting from omissions or errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this product to improve reliability, performance, function, or design.
ALL RIGHTS RESERVED.

The Purchaser of this software may use or modify in source form the subject software, but not to re-market or distribute it to outside agencies or separate internal company divisions. The software, however, may be embedded in the Purchaser’s distributed software. In the event the Purchaser’s customers require the software source code, then they would have to purchase their own copy of the software.

General Standards Corporation makes no warranty of any kind with regard to this software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose and makes this software available solely on an “as-is” basis. General Standards Corporation reserves the right to make changes in this software without reservation and without notification to its users.
The information in this document is subject to change without notice. This document may be copied or reproduced provided it is in support of products from General Standards Corporation. For any other use, no part of this document may be copied or reproduced in any form or by any means without prior written consent of General Standards Corporation.
GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

Table of Contents

1. Scope…………………………………………………………………………..
 4

2. Hardware Overview………………………………………………………….
 5

3. Referenced Documents……………………………………………………..
 6

4. General Standards API………………………………………………………………….
 7

4.1 AI32SSC_TT_FindBoards()………………………………………………………...
 8

4.2 AI32SSC_TT_Get_Handle()…………………………………………………………
 9

4.3 AI32SSC_TT_Read_Local32()……………………………………………………...
10

4.4 AI32SSC_TT_Write_Local32()……………………………………………………...
11

4.5 AI32SSC_TT_Close_Handle()………………………………………………………
12

4.6 Interface Functions……………………………………………………………
13

4.6.1 AI32SSC_TT_Initialize()……………………………………………………
13

4.6.2 AI32SSC_TT_Autocal()…………………………………………………….
14

4.6.3 AI32SSC_TT_Set_Input _Mode()……………………..………………….
15
4.6.4 AI32SSC_TT_Clear_Input_Buffer()………………………………………
16
4.6.5 AI32SSC_TT_Enable_Input_Buffer()……………………………………
17
4.6.6 AI32SSC_TT_Disable_Input_Buffer()……………………………………
18
4.6.7 AI32SSC_TT_LL_Control()……………………………………………….. 19

4.6.8 AI32SSC_TT_EnableInterrupt()…………………………………………..
20
4.6.9 AI32SSC_TT_DisableInterrupt()………………………………………….
21
4.6.10 AI32SSC_TT_Open_DMA_Channel()…………………………………… 22
4.6.11 AI32SSC_TT_DMA_FROM_Buffer()………….…………………………..
23
4.6.12 AI32SSC_TT_Close_DMA_Channel()………...………………………… 24
4.6.13 AI32SSC_TT_Setup_DmaCmdChaining()……...……………………….
25
4.6.14 AI32SSC_TT_Start_DmaCmdChaining().……………………………….
26
4.6.15 AI32SSC_TT_Close_DmaCmdChaining()……………………………… 27
4.6.16 AI32SSC_TT_Reset_Device()………………..…………………………… 28
4.6.17 AI32SSC_TT_Get_Physical_Memory()………………………………….
29
4.6.18 AI32SSC_TT_Free_Physical_Memory()…………………………..…….
30
4.6.19 AI32SSC_TT_Register_Interrupt_Notify()…....……………………… 31
4.6.20 AI32SSC_TT_Cancel_Interrupt_Notify()…....…..………………………
32
4.6.21 AI32SSC_TT_Dma_DataMode()……………..…………………………... 33
5. Driver Installation………………………………………………………………
34
6. Example Program………………………………………………………………
35
1. Scope

The Purpose of this document is to describe how to interface with the XMC-16AI32SSC Windows Driver API developed by General Standards Corporation (GSC). This software provides the interface between the “Application Software” and the XMC-16AI32SSC board.

The XMC-16AI32SSC Driver API Software executes under control of the Windows Operating System. The XMC-16AI32SSC is implemented as a standard Windows driver API written in “C” programming language. The XMC-16AI32SSC Driver API Software is designed to operate on CPU boards containing x86 or X64 processors.

The XMC-16AI32SSC Driver consists of a Windows driver with an interface layer (GSC API) to simplify the interface to the PLX Driver. While an application may interface directly to the PLX driver, interfacing to the GSC API layer, will simplify the application software development.

2. Hardware Overview

The XMC-16AI32SSC1M board is a single-width XMC PCI Express module that provides

high-speed simultaneous 16-bit analog input capability for XMC applications. 32 differential

analog input channels can be digitized simultaneously at rates up to 1,000,000 conversions per

second per channel, with software-controlled voltage ranges of ±10V, ±5V, ±2.5V or ±1.25V.

Integrated standard functions include Time-Tagging and Low-Latency access. The board is

functionally compatible with the IEEE PCI Express bus specification Revision 1.0a.

On-demand autocalibration ensures maximum accuracy under all conditions. A selftest

switching network routes calibration reference signals to each channel, and permits board

integrity to be verified by the host.

Power requirements consist of +3.3V and +12V from the Host bus in compliance with the PCI

Express specification, and operation over the specified temperature range is achieved with

conventional air cooling. Specific details of physical characteristics and power requirements are

contained in the XMC-16AI32SSC1M product specification.
3. Referenced Documents

The following documents provide reference material for the XMC-16AI32SSC board:

· XMC-16AI32SSC User’s Manual – GSC

· PLX Technology, Inc. PCI 9056 PCI Bus Master Interface Chip data sheet.

4.
General Standards API

This section describes the interface to the XMC-16AI32SSC GSC API. The XMC-16AI32SSC GSC API isolates the user from operating system specific requirements, allowing the API to be used with most Windows operating systems (Vista\Win7).

The XMC-16AI32SSC Win Driver provides an interface to a XMC-16AI32SSC card and a Windows application, which run on an x86 target processor. The driver is installed and devices are created when the driver is started during boot up. The functions of the driver can then be used to access the board. Devices are created with the name “board x” where “x” is the device number. Device numbers start at 1 and for each board found the device number will increment.

Included in the board driver software is a menu driven board application program. This program is delivered undocumented and unsupported but may be used to exercise the card and the device driver. It can also be used as an example for programming the XMC-16AI32SSC device.

The user interfaces to the GSC API at the basic level with the following functions:

· Find Boards() - Detects all PLX Devices connected via the PCI Bus.

· Get Handle() - Opens a driver interface to one 16AI64SS card.

· Readlocal32() - Reads local registers from one 16AI64SS card.

· Writelocal32() - Writes to local Registers of one 16AI64SS card.

· Close Handle() - Closes a driver interface to one 16AI64SS card.

The user MUST call Find Boards to determine what PLX devices are installed in the system, and get the associated board number. The user then calls the Get Handle function with each board number to be used. This function obtains a handle to the device and initializes the device parameters within the API / driver. The user is then free (assuming no errors) to write / read the registers as desired. The user should always call Close Handle when done to free resources prior to exiting.

The function definitions and parameters are defined in the following paragraphs of this section.

4.1 AI32SSC_TT_FindBoards()

Detects all PLX Devices connected via the PCI Bus.

Prototype:

U32 AI32SSC_TT_FindBoards (char
*pDeviceInfo,

 U32
*ulError);

Returns – Total number of PLX boards found in the system or –1L if error or no boards found.

Where:

pDeviceInfo – Contains “Board #: Bus: Slot: SSID: Type” info for PLX boards found.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.2 AI32SSC_TT_Get_Handle

Initializes Handle for the passed board number IN THE DRIVER.

Prototype:

U32 AI32SSC_TT_Get_Handle(U32

*ulError,

U32

BoardNumber);

Returns – Error code if invalid board number passed (0, >10), else # boards.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.3 AI32SSC_TT_Read_Local32

Read a value from the board local register.

Prototype:

U32 AI32SSC_TT_Read_Local32
(U32

BoardNumber,

 U32

*ulError,

 U32

ulRegister);

Returns – Value read from the register.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

ulRegister – Register to read. Values defined in XMC-AI32SSCintface.h

BCR

Board Control Register

ICR

Interrupt Control Register

IN_DATA_BUFF

Input FIFO Register

IN_DATA_CNTRL

Input Buffer Control Register

RATE_A

Rate A Generator Register

RATE_B

Rate B Generator Register

BUFF_SIZE

Number of Samples Register

BURST_SIZE

of Sample Clocks in a triggered Burst

SCAN_CNTRL

Scan and Sync Control Register

ACTIVE_CHANS

Number of Active Channels Register

FW_REV

Firmware Register (Undocumented)

AUTOCAL

Autocal Register (Undocumented)

UVAL

Aux R/W Register (Undocumented)

AUX SYNC

Auxiliary Sync I/O Register
SCAN_MARKER_U

Packed Data scan marker (D[31..16])
SCAN_MARKER_L

Packed Data scan marker (D[15..00])

LL_CONTROL

Low Latency HOLD /RELEASE channels
TT_CONFIG

Time Tag configuration Register

TT_ACTIVE_CHANS
Active channel mask Register

TT_TIME_TAG_L

Time tag counter lower 32bits

TT_TIME_TAG_U

Time tag counter upper 16bits

TT_RATE_DIV

Time tag rate divider

TT_BURST_SIZE

of Samples acquired per channel
TT_CRM

Constant reference mask Register

TT_CH00_THRS_REF
Channel00 Threshold/Reference Register

LL_CHAN_00

Low Latency Channel 00 data

4.4 AI32SSC_TT_Write_Local32

Write a value to the board local register.

Prototype:

void AI32SSC_TT_Write_Local32(U32

BoardNumber,
 U32

*ulError,

 U32

ulRegister

 U32

ulValue);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

ulRegister – Register to write. Values defined in XMC-AI32SSCintface.h
BCR

Board Control Register

ICR

Interrupt Control Register

IN_DATA_BUFF

Input FIFO Register

IN_DATA_CNTRL

Input Buffer Control Register

RATE_A

Rate A Generator Register

RATE_B

Rate B Generator Register

BUFF_SIZE

Number of Samples Register

BURST_SIZE

of Sample Clocks in a triggered Burst

SCAN_CNTRL

Scan and Sync Control Register

ACTIVE_CHANS

Number of Active Channels Register

FW_REV

Firmware Register (Undocumented)

AUTOCAL

Autocal Register (Undocumented)

UVAL

Aux R/W Register (Undocumented)

AUX SYNC

Auxiliary Sync I/O Register

SCAN_MARKER_U

Packed Data scan marker (D[31..16])

SCAN_MARKER_L

Packed Data scan marker (D[15..00])

LL_CONTROL

Low Latency HOLD /RELEASE channels

TT_CONFIG

Time Tag configuration Register

TT_ACTIVE_CHANS
Active channel mask Register

TT_TIME_TAG_L

Time tag counter lower 32bits

TT_TIME_TAG_U

Time tag counter upper 16bits

TT_RATE_DIV

Time tag rate divider

TT_BURST_SIZE

of Samples acquired per channel

TT_CRM

Constant reference mask Register

TT_CH00_THRS_REF
Channel00 Threshold/Reference Register

LL_CHAN_00

Low Latency Channel 00 data

ulValue – Value to write to the selected register.

 Refer to the XMC-16AI32SSC user manual for all register / bit definitions.

4.5 AI32SSC_TT_Close_Handle

Closes the device handle and frees the resources.

Prototype:

void AI32SSC_TT_Close_Handle(U32

BoardNumber,

 U32

*ulError);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6 Interface Functions

These functions allow the user to perform certain operations on the board, without having to keep track of individual register values and bit definitions.

4.6.1 AI32SSC_TT_Initialize

Perform a reset on the board. All register values are set to defaults. This Function does NOT wait for Initialization to complete, such that multiple boards can be initialized without waiting for each to finish.

Prototype:

void AI32SSC_TT_Initialize
(U32

BoardNumber,
 U32

*ulError);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.2 AI32SSC_TT_Autocal

Perform an auto calibration on the board. This operation generates new calibration correction values which are stored in nonvolatile EEprom. This function utilizes the autocal interrupt to determine when autocal is completed.

Prototype:

U32 AI32SSC_TT_Autocal
(U32

BoardNumber,
 U32

*ulError);

Returns – Autocal status (0 = Failed, 1 = Passed), 0x55 if insufficient resources, 0xAA if interrupt not requested.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.3 AI32SSC_TT_Set_Input_Mode

Sets the input mode of the board: Differential or Selftest (zero or Vref).

Prototype:

void AI32SSC_TT_Set_Input_Mode
(U32

BoardNumber,

U32

*ulError

U32

ulInputMode);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

ulInputMode – Valid values: 0 – 3

0 = Differential
1 = Reserved, will select Differential
2 = Zero Selftest

3 = +Vref Selftest

4.6.4 AI32SSC_TT_Clear_Input_Buffer

Clears all data from the active input buffer.

Prototype:

void AI32SSC_TT_Clear_Input_Buffer
(U32

BoardNumber,

 U32

*ulError);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.5 AI32SSC_TT_Enable_Input_Buffer

Enables data collection in the input buffer.

Prototype:

void AI32SSC_TT_Enable_Input_Buffer
(U32

BoardNumber,

 U32

*ulError);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.6 AI32SSC_TT_Disable_Input_Buffer

Disables data collection into the input buffer.

Prototype:

void AI32SSC_TT_Disable_Input_Buffer
(U32

BoardNumber,

U32

*ulError);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.7 AI32SSC_TT_LL_Control

Set Low Latency Hold & Release Channels.

Prototype:

void AI32SSC_TT_Disable_Input_Buffer
(U32

BoardNumber,

U32

ulStart,

U32

ulStop

U32

*ulError);

Returns – N/A

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulStart – Defines the channel number to initiate Data_On_Hold, i.e. Hold channel.

ulStop – Defines the channel number to release Data_On_Hold, i.e. Release channel.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.8 AI32SSC_TT_EnableInterrupt

Enables the desired interrupt in the local register, and/or for the PCI bus. See XMC-16AI32SSC User manual for interrupt sources.

Prototype:

U32 AI32SSC_TT_EnableInterrupt
(U32

BoardNumber,

 U32

ulValue,

 U32

ulType,

 U32

*ulError);

Returns – Interrupt value set for Local, else ulValue for DMA Channel.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulValue – The desired interrupt value to set, valid for 0 – 0x77 local. 0/1 for DMA
ulType – The desired type to set, 0 = Local ; 1 = DMA

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.9 AI32SSC_TT_DisableInterrupt

Disables all interrupts in the local register, and for the PCI bus.

Prototype:

void AI32SSC_TT_DisableInterrupt
(U32

BoardNumber,

 U32

ulValue,

 U32

ulType,

 U32

*ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulValue – The desired interrupt value to clear, valid for 0 – 0x77 local. 0/1 for DMA
ulType – The desired type to clear, 0 = Local ; 1 = DMA

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.10 AI32SSC_TT_Open_DMA_Channel

Opens the desired DMA channel for transferring data from the buffer.

Prototype:

void AI32SSC_TT_Open_DMA_Channel(U32

BoardNumber,

 U32

ulChannel,

 U32

*ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

uiValue – The desired channel to open, 0 or 1 .

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.11 AI32SSC_TT_DMA_FROM_Buffer

Transfers the desired number of WORDS from the board input buffer. The user should set the threshold value to DMA words –1 to satisfy the hardware DemandMode requirements.

Prototype:

U32 AI32SSC_TT_BlockDMA_FROM_Buffer
(U32

BoardNumber,

U32

ulChannel,

U32

ulWords,

U32*

uData,

U32

*ulError);

Returns – WORDS transferred if no error.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulChannel – The DMA channel previously opened, 0 or 1.

ulWords – Number of WORDS to transfer. (BYTES = ulWords*4).

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.12 AI32SSC_TT_Close_DMA_Channel

Closes the desired DMA channel.

Prototype:

void AI32SSC_TT_Close_DMA_Channel
(U32
BoardNumber,

 U32
ulChannel,

 U32
*ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

uiValue – The desired channel to close, 0 or 1.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.13 AI32SSC_TT_Setup_DmaCmdChaining
Sets up the descriptor blocks for SGL DMA transfer. A maximum of four (4) blocks can be setup per board. The descriptors are setup to be executed in turn by the hardware DMA controller based on the number of blocks specified in the function call. The first descriptor is always block1, and the blocks should be used in numerical order, i.e to specify three blocks, use block1, block2 and block3; such that specifying block1, block2 and block4 would be unacceptable.
NOTE: All descriptor blocks for a board are executed on the same DMA Channel.

NOTE: This function will disable clocking if internal clocking is enabled in the BCR.
NOTE: This function will CLEAR the input buffer.

Prototype:

U32 AI32SSC_TT_Setup_DmaCmdChaining (U32

BoardNumber,
 GS_DMA_DESCRIPTOR

*DmaSetup,

 U32

*ulError);

Returns – 0 if no errors, 1 for invalid board number, 2 for invalid data passed in DmaSetup, 3 for insufficient resources (physical memory to store descriptors), 4 is Reserved, 5 for error writing registers.
Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

DmaSetup– GS_DMA_DESCRIPTOR with the following members:
(See XMC-AI32SSCintface.h)
BytesDesc_1

of BYTES to transfer for Block1. Valid 2 – 8388607.
BytesDesc_2

of BYTES to transfer for Block2. Valid 2 – 8388607.

BytesDesc_3

of BYTES to transfer for Block3. Valid 2 – 8388607.

BytesDesc_4

of BYTES to transfer for Block3. Valid 2 – 8388607.

PhyAddrDesc_1
Valid PHYSICAL address for contiguous memory block
PhyAddrDesc_2
Valid PHYSICAL address for contiguous memory block
PhyAddrDesc_3
Valid PHYSICAL address for contiguous memory block
PhyAddrDesc_4
Valid PHYSICAL address for contiguous memory block
NumDescriptors

Number of Descriptor blocks to use. Valid 1-4.
LocalToPciDesc_1
Direction of Transfer. 1= Local->Pci. Only Valid value is 1.
LocalToPciDesc_2
Direction of Transfer. 1= Local->Pci. Only Valid value is 1.
LocalToPciDesc_3
Direction of Transfer. 1= Local->Pci. Only Valid value is 1.
LocalToPciDesc_4
Direction of Transfer. 1= Local->Pci. Only Valid value is 1.
InterruptDesc_1

Generate interrupt at Descriptor completion IF ENABLED
InterruptDesc_2

Generate interrupt at Descriptor completion IF ENABLED
InterruptDesc_3

Generate interrupt at Descriptor completion IF ENABLED
InterruptDesc_4

Generate interrupt at Descriptor completion IF ENABLED
DmaChannel

Valid 0 or 1.
ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.14 AI32SSC_TT_Start_DmaCmdChaining
Sets the DMA start bit on the DMA Controller. The only error checking performed is to ensure the Enable DMA bit is set.

NOTE: The user should call AI32SSC_TT_Setup_DmaCmdChaining prior to calling this function.
Prototype:

U32 AI32SSC_TT_Start_DmaCmdChaining
(U32

BoardNumber,

U32

ulChannel,

U32

*ulError);

Returns – 0 if no error, 1 for invalid board # or error, 2 for DMA Channel not ready.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulChannel – The DMA channel previously opened, 0 or 1.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.15 AI32SSC_TT_Close_DmaCmdChaining
Clears the DMA Controller start and enable bits to stop DMA transfers.

Prototype:

void AI32SSC_TT_Close_DmaCmdChaining
(U32
BoardNumber,

U32
ulChannel,

U32
*ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

uiValue – The desired channel to close, 0 or 1.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.16 AI32SSC_TT_Reset_Device

Performs a software reset on the device.

Prototype:

void AI32SSC_TT_Reset_Device(U32
BoardNumber,

 U32
*ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.17 AI32SSC_TT_Get_Physical_Memory

Obtains a contiguous block of physical memory from the OS for use with DMA, and maps it to user virtual memory space. The user requests a block size by setting the .Size member and the function returns the actual size in the .Size member if successful.
Prototype:

U32 AI32SSC_TT_Get_Physical_Memory (U32
BoardNumber,
GS_PHYSICAL_MEM

*memPtr,
 BOOLEAN

bSmallerOk,

 U32
*ulError);

Returns – 0 if error occurred, else the actual memory size obtained.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

memPtr – A GS_PHYSICAL_MEM structure with the following members:
UserAddr

The virtual memory address of the mapped memory block

PhysicalAddr

The actual physical address of the block to pass for DMA use

Size

Requested size passed, actual size returned if no errors

bSmallerOk

If a smaller block than requested is acceptable, set to 1

If set to FALSE (0), an error will be returned if memory unavailable
ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.18 AI32SSC_TT_Free_Physical_Memory

Unmap’s and free’s a physical memory block previously obtained by AI32SSC_TT_Get_Physical_Memory().

Prototype:

VOID AI32SSC_TT_Free_Physical_Memory (U32
BoardNumber,
 GS_PHYSICAL_MEM
*memPtr,

 U32
*ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

memPtr – A GS_PHYSICAL_MEM structure that has been initialized.
ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.19 AI32SSC_TT_Register_Interrupt_Notify
Registers a user event for interrupt notification.

NOTE: This function DOES NOT enable the interrupts the notification is based on.

Prototype:

void AI32SSC_TT_Register_Interrupt_Notify
(U32

BoardNumber,
 GS_NOTIFY_OBJECT

*event,

 U32

ulIntr,

 U32

ulType,

 U32

*ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

event – User creates an event and stores the handle in a GS_NOTIFY_OBJECT structure member hEvent. The user should not set or change the other members of the structure.
ulIntr – Used when ulType equals one (1). Valid for 0 (DMA0) or 1 (DMA1).

ulType – Determines interrupt type to attach to. Valid for 0 (Local) or 1 (DMA).

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.20 AI32SSC_TT_Cancel_Interrupt_Notify
Cancels interrupt notification for a user event.

Prototype:

void AI32SSC_TT_Cancel_Interrupt_Notify
(U32

BoardNumber,
 GS_NOTIFY_OBJECT

*event,

 U32

*ulError);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

event – A valid GS_NOTIFY_OBJECT structure which has been initialized by a call to AI32SSC_TT_Register_Interrupt_Notify.

ulError – Returns 0 or error code. Refer to tools.h for a list of error codes.

4.6.21 AI32SSC_TT_Dma_DataMode

Enables / disables data packing FOR DMA TRANSFERS. When enabled, 2 channels 16 bit data is packed into each 32 bit lword transferred.

Prototype:

void AI32SSC_TT_Dma_DataMode (U32
BoardNumber,

 U32
ulPack);

Returns – N/A.

Where:

BoardNumber – Defines board number to be used by the driver for a particular device.

ulPack – Valid for zero [0] (Normal) or nonzero [>0] (Packed).

 5.
Driver Installation

This section details driver installation on the target system. Any current driver previously installed for the XMC-16AI32SSC must be uninstalled prior to this installation to avoid interference.

To install the driver, API, and associated example files, insert the CD ROM into the drive and close the bay. The installation should commence automatically and display user prompts. Follow the onscreen instructions to complete the installation.

Should the installation fail to automatically start, Select Start (Run (Browse on the Windows toolbar/popup and browse to find Setup.exe on the CD ROM. Click on OK to commence the installation.

The following files are installed on the target system:

OS dependent\…\GS66AISSC.sys

OS dependent\…\GS66AISSCM.sys

OS dependent\…\GSebApi.dll

Program Files\General Standards\XMC-16AI32SSC\eExample.exe

Program Files\General Standards\XMC-16AI32SSC\AI32SSC tt eDriver C.dll

Program Files\General Standards\XMC-16AI32SS\AI64SSAe Driver C.lib

Program Files\General Standards\XMC-16AI32SS\XMC-AI32SSCintface.h

Program Files\General Standards\XMC-16AI32SS\XMC-AI32SSC_Example.c

Program Files\General Standards\XMC-16AI32SS\Tools.c

Program Files\General Standards\XMC-16AI32SS\Tools.h

Program Files\General Standards\XMC-16AI32SS\CioColor.h

Program Files\General Standards\XMC-16AI32SS\XMC-AI32SSCebdriver.inf

Program Files\General Standards\XMC-16AI32SS\XMC-16ai32amd64.cat

Program Files\General Standards\XMC-16AI32SS\XMC-16ai32x86.cat

OS dependent\... \XMC-AI32SSCedriver.inf

6.
Example Program

This section describes the example program, and the files required to develop an application.

The complied example program allows the user to exercise the installed device, while observing the outputs. To execute, double click on ‘eExample.exe’. Refer to the Driver Installation section for file location.

The source is provided to educate the user with the GSC API function calls and provide a working example to aid the user with application development. To build the example program using MS Visual C++, create a project and add the following files:

Source Files
(XMC-AI32SSC_Example.c

(Tools.c

Header Files
(XMC-AI32SSCintface.h

(CioColor.h

(Tools.h

Resource Files
(AI32SSC tt eDriver C.lib
Select Build ([ProjectName].exe on the toolbar.

NOTE: AI32SSC tt eDriver C.dll must be in the project directory to run the example.
Contact GSC for example programs (drivers) for other development environments (i.e LabVIEW(, LabWindows/CVI(, etc.)

	3
General Standards Corporation, Phone: (800) 653-9970

