24DS164C200K

24-bit, 64/48/32 channel, 250KS/S/Ch Delta-Sigma A/D Input

PCle-24DS164C200K

Linux Device Driver
And API Library
User Manual

Manual Revision: April 21, 2023
Driver Release Version 1.5.103.46.1

General Standards Corporation
8302A Whitesburg Drive
Huntsville, AL 35802
Phone: (256) 880-8787
Fax: (256) 880-8788
URL.: http://www.generalstandards.com
E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

24DSI164C200K, Linux Device Driver, User Manual

Preface

Copyright © 2017-2023, General Standards Corporation
Additional copies of this manual or other literature may be obtained from:

General Standards Corporation
8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this documentation and/or
software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Although extensive editing and reviews are performed before release, General Standards Corporation assumes no
responsibility for any errors, inaccuracies or omissions herein. This documentation, information and software are
made available solely on an “as-is” basis. Nor is there any commitment to update or keep current this
documentation.

General Standards Corporation does not assume any liability arising out of the application or use of
documentation, software, product or circuit described herein, nor is any license conveyed under any patent rights or
any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or
errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this documentation,
software or product, to improve accuracy, clarity, reliability, performance, function, or design.

ALL RIGHTS RESERVED.
GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

2
General Standards Corporation, Phone: (256) 880-8787

http://www.generalstandards.com/
mailto:sales@generalstandards.com

24DSI164C200K, Linux Device Driver, User Manual

Table of Contents

IO 14 0o [0 T 1 o] o ISP 8
Lo PUIPOSE. 1.ttt ettt h bR R R R R R R R R R R Rt bt 8
L2, AACTONYIMS ...ttt bt e e h ke bttt E R AR b e st AR e AR e b e e Rt Rt R Rt bt 8
IR O B 1= 11 1oL TSSOSO 8
1.4, SOTEWAIE OVEIVIBW ...ttt ettt te et e e et e st st e et e e st e e taesteesbeesbeesbeenbeeabeeaeesbeebeesbeeseeeseesaaesbeeateenteenns 8

1.4.1. BaSIC SOFtWAIe ATCHITECIUIE .. .cuiviiiitiiee ettt bbbttt e st ens 8
B N B o] - T Y2 TP PRRRPOO 9
1.4.3. DEVICE DIV ...ttt bbb bbb bbbt bRkttt b ket b e bttt et et b et et e neab et enes 9
1.5, HArOWAIE OVEIVIEWcveiviieiiitiieetiste ettt sttt sttt et etttk b s bt s e bt et e e bt et e e e bt n b et eb e et et e st b e e enes 9
1.6. RETEIENCE IMALEITALeeieeeeeiee ettt et bbbt et s b e bt sb e eb e e e et et nre e 9
O I oY 3 Yoo OSSR 10

P2 1151 = L] =L [0 o OSSPSR 11

N O e W Voo I T 0T BT U] o] o i SRS 11
2.1.1. 32-bit Support Under 64-bit ENVIFONMENTScviiiiiicciecceeceee ettt ae e 12
2.2. TR IPIOCT FHIE SYSBIM ... eiiiiicitie ettt ettt e st sbe e s beeeeeseeeae e eseeste e te e teeseeaseesneesreeseeeseeenseenes 12
P T T L T TSSOSO 12
R B Y= Tod (o] VA 1 (0 Tox (1 =SSOSR 12
2.5, INSTAITALION ...t bttt bt bbbt e h et e bt bt e bt b £ e b e e Rt et e eb e b e s bt bt e b e e e e e nnenas 13
2.6. REMOVALottt ettt et et e et e et e st e e s be e s be e ebeebeeabeeateeheeebe e be e beerbeeteeetaesreeabeeareenreenns 13
2.7. OVEFAII IMBKE SCIIPL. ..ttt b b bbb bbbt bbbttt e 13
2.8. ENVIFONMENT VATIADIESocviiiiiiiiie ettt sttt be et e et et e et e s be e beebeesbeetaesreesteesbeesbeenreenns 14
2.8.1. GSC_API COMP_ FLAGS..ciiiiiiiiisietitetetesee ittt ettt b bbb b st 14
2.8.2. GSC_APT LINK FLAGS iiiiiiiiueuitetetiiieierireststsie et s s sttt s et e st e e 14
2.8.3. GSC_LIB COMP_ FLAGS .iiiiisuiuiuerereteieiisereristsestsse st sissssast st e sss bbb e s st st st st s e s e et nenennas 14
2.8.4. GSC_LIB LINK FLAGS ..ottt bbb bbb bbb 15
2.8.5. GSC_APP COMP_ FLAGS .iiiiiitiuiuerereeeteiiiererisesestsse ettt se st st e sttt sttt nennas 15
2.8.6. GSC_APP LINK FLAGS ..ottt ittt bbb bbbt 15

3. MaAIN INTEITACE FIIES....ociiiiiec ettt e e ae e sae e s be e srneene e 16
3.1 IMAIN HEAAEE FHIE ...ttt st et et e e ae e ebeesbe e beebeesbeetsesteesbeesbeesbeenbeenns 16
3.2, IMIAIN LIDFANY FRIB ...ttt bbbttt b bt b bbbt et n s b e s 16

K I8 I =01 o RSOSSN 16
3.2.2. SYSLEIM LIDIAIIES ..ttt bbbt e bbbt et e b e st et e bbb e b bt e s e e b e e nae s 16

A APT LIDTATY ot b bbbt b et b e bbb 17
B0 RIS ittt ettt ettt h e ehe e be e be et be et ehaeahe e beebeeabeehbeebe e beebeerbearbesreeabeeereereenns 17
L = TU T (o OO SO TSROSO PR RPTRRTRN 17
4.3, LIDIAINY USE ..ttt bbb bR bR bbbt bbbt 17
T o1 SRR 18

o [T3 I ISR 18
3

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

AA.2. REGISLEES ...ttt ettt sttt ettt et et et e bt bt s bt e b £ e bt e s e e beeh e e b e e E e SR £ e E e oA e e Rt Sh e SR e SR e eR £ e R £ e R e et eh e b e ReebeeRe e e e b neeeas 18
4.5, DAEA TYPES ..eoreieitieiieiie ettt E R R R n e r Rt eb e s 18
4.8, FUNCHIONS ...ttt ettt ettt bbb bbb s bRt e b bRt b ke Rt b bRt b bt e b e b et et e bt e et nr e 18

o K (o7 o2 0[O S od =T) S 19

4.6.2. ASIBAC200K _TNMIE() . +ververerieerertirtesietisie ettt bbbt s e b s et e b st b et e bbbt e e bbb e 19

T B0 K (o7 o2 0 [0 G o Tox o [S 20

o K (o7 o2 0[O o] o<1 T SRS 21

T o K (o7 o2 0[O S =Y Uo [S 22
O (O 1O T Vol OSSPSR 23

4.7.1. DSI64C200K_IOCTL_AIl_BUF _CLEAR. ...ttt ettt st 23

4.7.2. DSI164C200K_IOCTL_AIl_BUF _ENABLEcooiiiiiii e 23

4.7.3. DSI64C200K_IOCTL_AIl_BUF _FILL _LVL oottt 23

4.7.4. DSI164C200K_IOCTL_AIl_BUF _OVERFLOW. ...ttt 24

4.7.5. DSIBAC200K_IOCTL_Al BUF _THR_STS ...oiiiirieeieeieeeeeeiesieesiesssessisssessssssssssesssssssssssssssessanssnnes 24

4.7.6. DSI64C200K_IOCTL_AI_BUF _THRESHcciiiiiiiiieieisees e 24

4.7.7. DS164C200K_IOCTL_AIl_BUF_UNDERFLOW........cocotiiiiiiiieisesieis et 25

4.7.8. DSIB4AC200K _IOCTL_AI_FILTERiiiiieiieieisesee ettt st sttt 25

4.7.9. DSIB4C200K _IOCTL_AI_MODE.......cciitiiiiiieisies ettt bbbt sttt ens 25

4.7.10. DSI64C200K _IOCTL_AUTO _CAL_STS .ottt ettt sttt 26

4.7.11. DSI64C200K_IOCTL_AUTO_CALIBRATEootiiieeise sttt 26

4.7.12. DSIBAC200K_IOCTL_AUX_CLOCKooovvieeiereeeeeeeeeeeeeeiesieesieessesssesssessssssssssssssssessssssssssanssnnes 26

4.7.13. DSIBAC200K_IOCTL_AUX_SYNCooiierieeeereeeieeeesieseeeesieeseeseesssessssssesssssssssssssessnss s s s 27

4.7.14. DSI64C200K_IOCTL_BURST_ENABLEooiiii ettt 27

4.7.15. DSI64C200K_IOCTL_BURST _RATE DIVovviieieeeeeeeeeeeeeeeieeeessieeseeeeesessssssssseesisssssesna s 27

4.7.16. DSIBAC200K_IOCTL_BURST SIZEovooioeeeeeeeeeeeeieeeeeeeesieesiesseesssessiesssessanssssssssess s s ssannannes 27

4.7.17. DSI64C200K_IOCTL_BURST_TIMER ...cooitiiiiiiiiisenieise et s 28

4.7.18. DSI64C200K_IOCTL_BURST_TRIGGERcciiiiiiiieiiiseieis e 28

4.7.19. DSI64C200K_IOCTL_CHAN_GRP_ACTIVE ...octiiiieeseee et 28

4.7.20. DSI64C200K_IOCTL_CHANNELS_READYcctiiiiiieisesieis et sttt 28

4.7.21. DSIBAC200K_IOCTL_CLK _SRCociiiiieiiiieieiisiesiees ettt sttt sttt ne st e e 29

4.7.22. DSI64C200K_IOCTL_CONTROL_MODEccocctiiiiiiiiiiiiesieiee et 29

4.7.23. DSIB4C200K_IOCTL_DATA FORMAToomirieeeeeeieeieeeeeeseeeseeseeseiesssseessenssssasssss e s nsanninnes 30

4.7.24. DSI64C200K_IOCTL_DATA WIDTH ...ooiiiiieieee ettt sttt nneas 30

4.7.25. DSI64C200K_IOCTL_DIO _DIR_OUT w...ooviiieieeeeieeeeeeeeeeeeseeeseeseessiessseseesssseesnenssess s s snannannes 30

4.7.26. DSIB4C200K_IOCTL_DIO _READ..........oooovieeeeeeeeeeeeeeeeeseeeeseieseeeseesessssessesssssssssnssnsssessssnsannannes 30

4.7.27. DSIB4C200K_IOCTL_DIO WRITEoiiiriieeeeeeeeeeeeeeeeeseeeeseeeseeseessisssesesssa s snassssss e ssnannennes 31

4.7.28. DSIB4C200K_IOCTL_EXT_CLK_SRC w..oovvieeereeeeeeeeeieeeeeeseeeseeseseissseseeessssssssasssess e nsesnannannes 31

4.7.29. DSI64C200K_IOCTL_FGEN_DIV ..ottt sttt 31

4.7.30. DSI6AC200K_IOCTL_INIT_ADCScttiiiiieieiisiesieie ettt ettt sttt sttt se st e e 32

4.7.31. DSI6AC200K _IOCTL_INITIALIZE ...ttt ettt 32

4.7.32. DSI64C200K_IOCTL_IRQ_SELiiiiiiiiiiiiiieieisiesiei ettt sttt sttt e 32

4.7.33. DSI64C200K_IOCTL_MCLK DIV ...oiiiiiiiiiieieisiee ettt sttt 33

4.7.34. DSI6AC200K _TOCTL_INREF ...ttt steete e eneenneenteenteeneeeneeanees 33

4.7.35. DSIGAC200K_TOCTL_NVECO ...coiiiiiciiitiict ettt ettt sttt ettt be st b ne st s e 33

4.7.36. DSIB4C200K_IOCTL_OVER_SAMPLEovoiiveeeeeeieeeeeeeeseeeseesseessiesssessessessssssnssnsa s nsnsa s 33

4.7.37. DSI64C200K_IOCTL_QUERY ..ottt ettt ettt sttt te e ene et e nteenteeneeeneeanees 34

4.7.38. DSIB4C200K_IOCTL_REG_MODovviveieeoereeeeeseeeseeseeeesesseessessssssnsssssssssssnssnsassssssnsanssnnes 35

4.7.39. DSIB4C200K_IOCTL_REG_READ........oo.oveeeereeeeeeeieeeesseieseissiessessssssesssssssssssasssnsssssnssnsa s 35

4.7.40. DSI64C200K_IOCTL_REG_WRITEooiiiiiiiiiieieise ettt st 36

4.7.41. DSI64C200K_IOCTL_RX _IO_ABORT ...ctiiieiiiieieisieieresie st e sttt ettt s e ssensesessessans 36

4.7.42. DSI64C200K_IOCTL_RX _IO_MODEccctiiiiiieiiiieiecse ettt sttt 37

4.7.43. DSI64C200K_IOCTL_RX _IO_OVERFLOW.......cciiiiiiiieiisiesiei ettt 37

4.7.44. DSI64C200K_IOCTL_RX _IO_TIMEOUTotiiiiiieiiieieise ettt 37

4.7.45. DSI64C200K_IOCTL_RX_IO_UNDERFLOW.ccocotiiiiiiiiieieesiees ettt 38

4

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

4.7.46. DSIGAC200K_TOCTL_SW_SYNC ...ttt sttt bbbttt et 38
4.7.47. DSI64C200K_IOCTL_SW_SYNC_MODEccocstiiiiiiiiiinieeisiee et 38
4.7.48. DSI6AC200K_IOCTL_SYNC_SRC ..ottt 38
4.7.49. DSI64C200K_IOCTL_WAIT_CANCELocviiiriiienciee et 39
4.7.50. DSI64C200K_IOCTL_WAIT_EVENT ...ttt 40
4.7.51. DSI64C200K_IOCTL_WAIT_STATUS ...ttt 42
4.7.52. DSI64C200K_IOCTL_XCVR_TYPE ...ttt 42

ST I 0 [l B AV T RO PR TSP 44
TR R 1TSS 44
5.2, BUIIH ... R R R R n R 44
TG T -1 (1] o F P PP SURU PSRRI PRI 44
5.3.1. Manual Driver Startup PrOCEAUIESccviiieieeeeieiestes e ste e s ae e e e sae e stesta s e e e esaessesteseestesseaneeseenseseessens 44
5.3.2. Automatic Driver Startup PrOCEAUIES.........viii i ciesti ettt ee s s te et et e st e et e steenteeteeseeaneeannes 45

5.4, VEITICAIION ...ttt e b e bR bRt b etk R e bt n et r et nr s 46
ST TV =1 £] TSRS T PP P PP PP 47

Eo TG T 111 (01 o PSSR 47
6. Document Source Code EXamMPIES.......cccociiiiiiiiiiiieie e 48
B. L. FHIES. ettt R R R R Rt r et r s 48
B.2. BUIIH ...ttt bbb bR R R R R R R Rt R Rt R bR bt 48
LT o] =Y - SRS 48
T ULHTY SOUICE COUR ...ttt bbbttt nb e bbb ene s 49
70 O -SSR 49
T.2. BUIIH <.t ek b bR R R bR R R R R bbbt R bbbt r e 49
S T I 1o =V U - OSSR 49
8. Operating INTOMMATIONooiiiiiiiiiee bbbt 50
8.1. ANAlog INPUL CONFIGUIALIONviviitiieeictte et b bbbttt 50
ST 1@ N 1Y, o o LSS 50
8.2.1. P1O - ProgramMEd /O ..ottt ettt b bbb bbbttt n et 50
8.2.2. BMDMA - BIOCK MOUE DIMA ...ttt ettt sttt e e aeaesaesteaneaneeneeneeeeneens 50
8.2.3. DMDMA - Demand MOOE DIMA ..ottt 50

LIRS I D=t o TUTo o [T Lo AN o LTSV PTUR U 50
8.3.1. DEVICE IAENTITICALION ...ttt b e bbbttt e e e b e bbbt et e bt e s e e e e be e 50
8.3.2. Detailed REGISIEr DUIMP ..ottt ettt bttt e e bbbt bt et e st e s e e e e b sbesbeebeeneeseeeebeneens 51

8.4. MUlti-B0oard SYNCRIONIZATIONoouiiiiiiieiee e bbbttt bbbttt e e et 51
8.4 L. SEAr CONTIGUIALION ...ttt b et e bt bbbt e bt e st e e e b sbesb e e beebe e s e e e ebesbens 51
8.4.2. Daisy Chain CONfIQUIALIONc..oiiiiiiiitiitiicierie ettt nb ettt e b s 52

9. SaMPIE APPHICATIONS ...ttt ettt nas 53
9.1. billion - Billion Byte Read - .../DIllION/cviviriiiiiiiiiiciiieeee st 53
9.2.din - Digital INPUL - ... QIN/ c.eceiecc bbb s 53
9.3. dout - Digital OULPUL - .../AOUL/ceeeieiieiiecectr bbbttt 53

5

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

9.4. fsSamp - SAMPIE RALE - ... /FSAIMP/ ...vevieiiiiieeceree bbbttt bt nb e 53
9.5.1d - 1Aentify BOAIM = ... 10/ ..ottt 53
9.6. 1rQ - INTEITUPE TESE = .../ ITQ/ cteeveeirietiiie ettt ettt bbbttt b et b et e e b et et es et e e enes 53
0.7. 105 - REGISIEN ACCESS = .. ./TEES/ 1. vetevereitirieseetisteseete st ettt ettt et st et sb e e bt s be e be st et e bt st et ebe st e b abe st et asenbeeens 53
9.8, IXIAte - RECEIVE RALE = .../TXIALE/ ..cviveriitiieesietisie ettt ettt ettt sttt b et et bt st e e e bt st e e ebenb e eesenbeeenes 53
9.9. savedata - Save Acquired Data - .../SAVEAAtA/cceciveeerieie i se et ns 53
9.10. signals - Digital SIgNalS - .../SIZNALS/cviiriiriiiiiiiitirie ettt b et e b nnenes 54
DOCUMENT HISTOTY ...ttt bbbttt bbb 55
6

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

Table of Figures

Figure 1 Basic architeCtural repreSENTALION.c.civiiieieiesise e eee ettt e e te e ra e e e e e aesresbesreene e e enseseenrenrs 9

Figure 2 The star configuration with three or more boards requires a Clock Driver board............ccccoevviveiveieieinnnnns 52

Figure 3 The star configuration with only two boards does not require a Clock Driver board.ccccccevevveieienns 52

Figure 4 In this configuration the clock and sync signals are daisy chained from one board to the next. 52
7

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

1. Introduction

1.1. Purpose
The purpose of this document is to describe the interface to the 24DSI164C200K API Library and to the underlying
Linux device driver. The API Library software provides the interface between "Application Software" and the

device driver. The driver software provides the interface between the API Library and the actual 24DS164C200K
hardware. The API Library and driver interfaces are based on the board’s functionality.

1.2. Acronyms

The following is a list of commonly occurring acronyms which may appear throughout this document.

Acronyms | Description

API Application Programming Interface
BMDMA | Block Mode DMA

DMA Direct Memory Access

DMDMA | Demand Mode DMA

GSC General Standards Corporation

PCI Peripheral Component Interconnect
PCle PCI Express

PIO Programmed 1/0O

PMC PCI Mezzanine Card

1.3. Definitions

The following is a list of commonly occurring terms which may appear throughout this document.

Term Definition

This is a shortcut representation of the 24DS164C200K installation directory or any of its
subdirectories.

24DSI164C200K | This is used as a general reference to any board supported by this driver.

API Library This refers to the library implementing the 24DS164C200K API.

Application This is a user mode process, which runs in user space with user mode privileges.

Driver This is the 24DSI64C200K device driver, which runs in kernel space with kernel mode
privileges.

Library This is usually a general reference to the API Library.

1.4. Software Overview
1.4.1. Basic Software Architecture

This section describes the general architecture for the basic components that comprise 24DS164C200K applications.
The overall architecture is illustrated in Figure 1 below.

8
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

24DSI164C200K

Application dsi64c200K_init()
dsi64c200k_open()
¢ dsi64c200k_close()

dsi64c200k_ioctl()

24DSIBAC200K | o 1o 4si6ac200k_api.so dsi64c200k_read()

Application Level

e ey dsi64c200k_write()
Kemnel Level 24DSI164C200K 24dsi64c200k.ko or /proc/24dsi64c200k Informational
Device Driver 24dsi64c200k.0 /dev/24dsi64c200k.0 Device 0
/dev/24dsi64c200k.1 Device 1
¢ /dev/24dsi64c200k.X Device X

24DSI164C200K

Hardware Level Boards

Figure 1 Basic architectural representation.
1.4.2. API Library

The primary means of accessing 24DS164C200K boards is via the 24DS164C200K API Library. This library forms a
very thin layer between the application and the driver. Additional information is given in section 4 beginning on
page 17. With the library, applications are able to open and close a device and, while open, perform 1/O control and
read operations.

1.4.3. Device Driver

The device driver is the host software that provides a means of communicating directly with 24DS164C200K
hardware. The driver executes under control of the operating system and runs in Kernel Mode as a Kernel Mode
device driver. The driver is implemented as a standard dynamically loadable Linux device driver written in the C
programming language. While applications can access the driver directly without use of the API Library, it is
recommended that all access is made through the library.

1.5. Hardware Overview

The 24DSI64C200K is a high-performance, 24-bit analog input board that contains either 64, 48 or 32 input
channels. The host side connection is PCI based and the form factor is according to the model ordered. The board is
capable of acquiring data at up to 250K samples per second over each channel. Internal clocking permits sampling
rates from 250K samples per second down to 33 samples per second. Onboard storage permits data buffering of up
to 256K samples, for all channels collectively, between the cable interface and the PCI bus. This allows the
24DSI164C200K to sustain continuous throughput from the cable interface independent of the PCI bus interface. The
24DSI64C200K also permits multiple boards to be synchronized so that all boards sample data in unison. In
addition, the board includes auto-calibration capability and four general purpose digital 1/O lines.

1.6. Reference Material

The following reference material may be of particular benefit in using the 24DS164C200K. The specifications
provide the information necessary for an in depth understanding of the specialized features implemented on this
board.

e The applicable 24DS164C200K User Manual from General Standards Corporation.

e The PCI9056 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

9
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA
Phone: 1-800-759-3735

WERB: http://www.plxtech.com

1.7. Licensing

For licensing information please refer to the text file LICENSE. txt in the root installation directory.

10
General Standards Corporation, Phone: (256) 880-8787

http://www.plxtech.com/

24DSI164C200K, Linux Device Driver, User Manual

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 6.x, 5.x, 4., 3., 2.6, 2.4 and 2.2 running on a PC
system with one or more x86 processors. This release of the driver supports the below listed kernels.

Kernel | Distribution

6.0.7 | Red Hat Fedora Core 37

5.17.5 | Red Hat Fedora Core 36
5.14.10 | Red Hat Fedora Core 35
5.11.12 | Red Hat Fedora Core 34
5.8.15 | Red Hat Fedora Core 33
5.6.6 | Red Hat Fedora Core 32
5.3.7 | Red Hat Fedora Core 31
5.0.9 | Red Hat Fedora Core 30

4.18.16 | Red Hat Fedora Core 29
4.16.3 | Red Hat Fedora Core 28
4.13.9 | Red Hat Fedora Core 27
4.11.8 | Red Hat Fedora Core 26
4.8.6 | Red Hat Fedora Core 25
455 | Red Hat Fedora Core 24
4.2.3 | Red Hat Fedora Core 23
4.0.4 | Red Hat Fedora Core 22

3.17.4 | Red Hat Fedora Core 21
3.11.10 | Red Hat Fedora Core 20
3.9.5 | Red Hat Fedora Core 19
3.6.10 | Red Hat Fedora Core 18
3.3.4 | Red Hat Fedora Core 17
3.1.0 | Red Hat Fedora Core 16

2.6.38 | Red Hat Fedora Core 15
2.6.35 | Red Hat Fedora Core 14
2.6.33 | Red Hat Fedora Core 13
2.6.31 | Red Hat Fedora Core 12
2.6.29 | Red Hat Fedora Core 11
2.6.27 | Red Hat Fedora Core 10
2.6.25 | Red Hat Fedora Core 9
2.6.23 | Red Hat Fedora Core 8
2.6.21 | Red Hat Fedora Core 7
2.6.18 | Red Hat Fedora Core 6
2.6.15 | Red Hat Fedora Core 5
2.6.11 | Red Hat Fedora Core 4
2.6.9 | Red Hat Fedora Core 3

NOTE: Some older kernel versions are supported (the sources are maintained), but are not tested.

NOTE: While only Red Hat Fedora distributions are listed, numerous other distributions are
supported and have been tested on an as needed basis.

NOTE: The driver will have to be built before being used as it is shipped in source form only.

11
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

NOTE: The driver has not been tested with a non-versioned kernel.
NOTE: The driver is designed for SMP support, but has not undergone SMP specific testing.
2.1.1. 32-bit Support Under 64-bit Environments

This driver supports 32-bit applications under 64-bit environments. The availability of this feature in the kernel
depends on a 64-bit kernel being configured to support 32-bit application compatibility. Additionally, 2.6 kernels
prior to 2.6.11 implemented 32-bit compatibility in a way that resulted in some drivers not being able to take
advantage of the feature. (In these kernels a driver’s IOCTL command codes must be globally unique. Beginning
with 2.6.11 this requirement has been lifted.) If the driver is not able to provide 32-bit support under a 64-bit kernel,
the “32-bit support” field in the /proc/24dsi64c200k file will be “no”.

2.2. The /proc/ File System

While the driver is running, the text file /proc/24dsi64c200k can be read to obtain information about the
driver. Each file entry includes an entry name followed immediately by a colon, a space character, and the entry
value. Below is an example of what appears in the file, followed by descriptions of each entry.

version: 1.5.103.46
32-bit support: yes
boards: 1

models: 24DSI64C200K

Entry Description

version This gives the driver version number in the form x.x.x . x.

This reports the driver’s support for 32-bit applications. This will be either “yes” or “no”

32-bit t . .
+- SUPPOTE | g0 64-bit driver builds and “yes (native)” for 32-bit builds.

boards This identifies the total number of boards the driver detected.
This lists the basic model names for the boards identified by the driver. There is one entry
models for each board. The order corresponds to that of the /dev/24dsi64c200k.n device
nodes.
2.3. File List

This release consists of the below listed primary files. The archive content is described in following subsections.

File Description

24dsi64c200k.linux.tar.gz | This archive contains the driver, the API Library and all related files.

24dsi164c200k_linux_um.pdf | Thisis a PDF version of this user manual, which is included in the archive.

2.4. Directory Structure

The following table describes the directory structure utilized by the installed files. During installation the directory
structure is created and populated with the respective files.

Directory Content
24dsi64c200k/ ThIS.IS the driver root directory. It contains t_he dogumentatlon, the Overall Make Script
(section 2.7, page 13) and the below listed subdirectories.
../api/ This directory contains the 24DSI164C200K API Library (section 4, page 17).
../docsrc/ This directory contains the code samples from this document (section 6, page 48).
../driver/ This directory contains the driver and its sources (section 5, page 44).
../include/ This directory contains the include files for the various libraries.
12

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

../1ib/ This directory contains all of the libraries built from the driver archive.
../samples/ This directory contains the sample applications (section 9, page 53).
./utils/ This directory contains utility sources used by the sample applications (section 7, page 49).

2.5. Installation

Perform installation following the below listed steps. This installs the device driver, the API Library and all related
sources and documentation.

1.

Create and change to the directory where the files are to be installed, such as /usr/src/linux/drivers/.
(The path name may vary among distributions and kernel versions.)

Copy the archive file 24dsi64c200k.1inux.tar.qgz into the current directory.
Issue the following command to decompress and extract the files from the provided archive. This creates the
directory 24dsi64c200k in the current directory, and then copies all of the archive’s files into this new

directory.

tar —-xzvf 24dsi64c200k.linux.tar.gz

2.6. Removal

Perform removal following the below listed steps. This removes the device driver, the API Library and all related
sources and documentation.

1.

2.

Shutdown the driver as described in section 5.6 on page 47.

Change to the directory where the driver archive was installed, which may have been
/usr/src/linux/drivers/. (The path name may vary among distributions and kernel versions.)

Issue the below command to remove the driver archive and all of the installed driver files.

rm —-rf 24dsi64c200k.linux.tar.gz 24dsi64c200k

Issue the below command to remove all of the installed device nodes.

rm —-f /dev/24dsi64c200k.*

If the automated startup procedure was adopted (section 5.3.2, page 45), then edit the system startup script

rc.local and remove the line that invokes the 24DS164C200K’s start script. The file rc. local should
be located in the /etc/rc.d/ directory.

2.7. Overall Make Script

An Overall Make Script is included in the root installation directory. Executing this script will perform a make for
all build targets included in the release, and it will also load the driver. The script is named make all. Follow the
below steps to perform an overall make and to load the driver.

1.

2.

NOTE: The following steps may require elevated privileges.
Change to the driver root directory (.../24dsi64c200k/).

Remove existing build targets using the below command line. This does not unload the driver.

13
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

./make _all clean
3. Issue the following command to make all archive targets and to load the driver.

./make all

2.8. Environment Variables

Some build environments may require compiler or linker options not present in the provided make files. To
accommodate local environment specific requirements, the provided make files incorporate support for the
following set of GSC specific environment variables.

2.8.1. GSC_API_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the API Library. The compiler used by the API Library make file is “gcc”. The content of this environment variable
is noted in the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in
the table refers to the contents of the environment variable. This environment variable has no effect on compiling
any other distributed source files or linking of any object files.

. == Compiling: init.c
Undefined == Compiling: ioctl.c
or Empty s
== Compiling: open.c
. == Compiling: init.c (added '"xxx')
Bg?gﬁ??“i = Compiling: ioctl.c (added 'xxx')
PY | — Compiling: open.c (added "xxx')

2.8.2. GSC_API_LINK_FLAGS

This environment variable accommodates adding linker command line options when linking object files for the API
Library. The linker used by the API Library make file is “1d”. The content of this environment variable is noted in
the make file’s output to the screen. The table below shows a portion of the screen output. The “xxx” in the table
refers to the contents of the environment variable. This environment variable has no effect on compiling of any
source files or linking of any other object files.

Undefined | ____ 1inxing: ../1ib/1ib24dsi64c200k api.so

or Empty _

Definedand | ____ , , . . : :
Not Empty Linking: ../1ib/1ib24dsi64c200k api.so (added 'xxx')

2.8.3.GSC_LIB COMP FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the utility libraries. The compiler used by the utility library make files is “gcc”. The content of this environment
variable is noted in the make files’ output to the screen. The table below shows a portion of the screen output. The
“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on
compiling any other distributed source files or linking of any object files.

== Compiling: close.c
Undefined — ¢ p.l. g' D
or Empty == Compilling: 1nit.c
== Compiling: ioctl.c

14
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

i == Compiling: close.c (added 'xxx')
Definedand | __ e 2T ' ;
Not Empt == Compiling: init.c (added '"xxx')

Pty | = Compiling: ioctl.c (added 'xxx')

2.8.4.GSC_LIB_LINK FLAGS

This environment variable accommodates adding linker command line options when linking object files for the
utility libraries. The linker used by the utility library make files is “1d”. The content of this environment variable is
noted in the make files” output to the screen. The table below shows a portion of the screen output. The “xxx” in the
table refers to the contents of the environment variable. This environment variable has no effect on compiling of any
source files or linking of any other object files.

Undefined | ____ 1,/ xing: ../1ib/24dsi64c200k utils.a

or Empty —

Definedand | ____ 1:,ying: ../1ib/24dsi64c200k utils.a (added 'xxx')
Not Empty -

2.8.5.GSC_APP_COMP_FLAGS

This environment variable accommodates adding compiler command line options when compiling source files for
the sample applications. The compiler used by the sample application make files is “gcc”. The content of this
environment variable is noted in the make files’ output to the screen. The table below shows a portion of the screen
output. The “xxx” in the table refers to the contents of the environment variable. This environment variable has no
effect on compiling any other distributed source files or linking of any object files.

Undefined == Compiling: main.c

or Empty == Compiling: perform.c

Defined and | == Compiling: main.c (added 'xxx")

Not Empty | == Compiling: perform.c (added 'xxx')

2.8.6. GSC_APP_LINK FLAGS

This environment variable accommodates adding linker command line options when linking object files for the
sample applications. The linker used by the sample application make files is “gcc”. The content of this environment
variable is noted in the make files” output to the screen. The table below shows a portion of the screen output. The
“xxx” in the table refers to the contents of the environment variable. This environment variable has no effect on
compiling of any source files or linking of any other object files.

Undefined o , p
or Empty = Linking: id

Definedand | ____ ’ :
Not Empty Linking: id (added 'xxx')

15
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

3. Main Interface Files

This section gives general information on the suggested device interface files to use when developing
24DSI164C200K based applications.

3.1. Main Header File

Throughout the remainder of this document references are made to various header files included as part of the
24DSI64C200K driver archive. For ease of use it is suggested that applications include only the single header file
shown below rather than individually including those headers identified separately later in this document. Including
this header file pulls in all other pertinent 24DS164C200K specific header files. Therefore, sources may include only
this one 24DS164C200K header and make files may reference only this one 24DSI64C200K include directory.

Description | File Location
Header File | 24dsi64c200k main.h | ../include/

3.2. Main Library File

Throughout the remainder of this document references are made to various statically linkable libraries included as
part of the 24DSI64C200K driver archive. For ease of use it is suggested that applications link only the single
library file shown below rather than individually linking those libraries identified separately later in this document.
Linking this library file pulls in all other pertinent 24DSI164C200K specific static libraries. Therefore, make files
may reference only this one 24DS164C200K static library and only this one 24DSI164C200K library directory.

Description | File Location
Static Library | 24dsi64c200k main.a | ../1ib/

NOTE: The 24DSI164C200K API Library is implemented as a shared library and is thus not linked
with the 24DS164C200K Main Library.

3.2.1. Build

The main library is built via the Overall Make Script (section 2.7, page 13). However, the main library can be rebuilt
separately following the below steps.

1. Change to the directory where the main library resides (../1ib/).
2. Remove existing build targets using the below command line.
make clean
3. Rebuild the main library by issuing the below command.
make
3.2.2. System Libraries

In addition to linking the static library named above, applications may need to also link in additional system libraries
as noted below.

Library gcc Link Flag
Math -1m

POSIX Thread | ~1pthread
Real Time -1rt

16
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

4. API Library

The 24DSI164C200K API Library is the software interface between user applications and the 24DS164C200K device
driver. The interface is accessed by including the header file 24dsi64c200k_api.h.

NOTE: Contact General Standards Corporation if additional library functionality is required.
4.1. Files

The library source files are summarized in the table below.

File Description
api/*.c These are library source files.
api/*.h These are library header files.
api/makefile This is the library make file.
api/makefile.dep This is an automatically generated make dependency file.
include/24dsi64c200k api.h | This isthe library interface header file.
1ib/1ib24dsi64c200k api.so | Thisisthe API Library shared library file. *

* The shared library is automatically copied to /usr/1ib/ when it is built.

4.2. Build

The API Library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the
below steps.

NOTE: The API Library shared library is copied to /usr/1ib/. Therefore, these steps may
require elevated privileges.

1. Change to the directory where the library sources are installed (.../api/).
2. Remove existing build targets using the below command line.
make clean

3. Compile the source files and build the library by issuing the below command.

make

4.3. Library Use

The library is used at application compile time, at application link time and at application run time. At compile time
include the below listed header file in each source file using a component of the library interface. At link time
include the below listed linker argument on the linker command line. At link time and at run time the library is
found in the directory /usr/1ib/. (The shared library file is automatically copied to /usr/1ib/ when the
library is built.)

Description File Location Linker Argument
Header File 24dsi64c200k api.h ../include/
../1ib/

/usr/lib/ | -124dsi64c200k api

Shared Library | 11b24dsi64c200k api.so

17
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

4.4. Macros

The API Library and driver interfaces include the following macros, which are defined in 24dsi64c200k.h.
4.4.1.10CTL

The IOCTL macros are documented in section 4.7 beginning on page 23.

4.4.2. Registers

The following gives the complete set of 24DSI164C200K registers.

4.4.2.1. GSC Registers

The following table gives the complete set of GSC specific 24DSI164C200K registers. For detailed definitions of
these registers refer to the relevant 24DSI164C200K User Manual. Please note that the set of registers supported by

any given board may vary according to model and firmware version. For the set of supported registers and detailed
definitions of these registers please refer to the appropriate 24DS164C200K User Manual.

Macro Description

DSI64C200K GSC AICR Analog Input Configuration Register
DSI64C200K_GSC_ASIOCR | Auxiliary SYNC 1/O Control Register
DSI64C200K _GSC_AVR Auto-Cal Values Register
DSI64C200K_GSC_BBSR Burst Block Size Register
DSI64C200K_GSC_BCFGR | Board Configuration Register
DSI64C200K_GSC BCTLR | Board Control Register
DSI64C200K_GSC_BTTR Burst Trigger Timer Register
DSI64C200K_GSC _BUFCR | Buffer Control Register
DSI64C200K GSC BUFSR | Buffer Size Register

DSI64C200K _GSC_DIOPR | Digital I/O Port Register
DSI64C200K GSC IDBR Input Data Buffer Register
DSI64C200K GSC RCR Rate Control Register

4.4.2.2. PCI Configuration Registers

Access to the PCI registers is seldom required so these registers are not listed here. For the complete list of the PCI
register identifiers refer to the driver header file gsc pci9056.h, which is automatically included via
24dsi64c200k_api.h.

4.4.2.3. PLX PCI9056 Feature Set Registers

Access to the PLX registers is seldom required so these registers are not listed here. For the complete list of the PLX

register identifiers refer to the driver header file gsc pci9056.h, which is automatically included via
24dsi64c200k_api.h.

4.5. Data Types
The data types used by the API Library are described with the IOCTL services with which they are used.
4.6. Functions

The interface includes the following functions. The return values reflect the completion status of the requested
operation. A value of zero indicates success. A negative value indicates that the request could not be completed

18
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

successfully. The specific value returned is the negative of the corresponding error status value taken from
errno.h. /O services return positive values to indicate the number of bytes successfully transferred.

4.6.1. dsi64c200k_close()

This function is the entry point to close a connection to an open 24DS164C200K board. The board is put in an
initialized state before this call returns.

Prototype

int dsi64c200k close(int £d);

Argument

Description

fd

This is the file descriptor of the device to be closed.

Return Value | Description

0

The operation succeeded.

<0

An error occurred. This is the negative of errno from errno. h.

Example

#include <stdio.h>

#include "24dsi64c200k dsl.h"

int dsi64c200k close dsl(int fd)

{
int errs;
int ret;
ret = dsi64c200k close(£fd);
if (ret)
printf ("ERROR: dsi64c200k close() returned %$d\n", ret);
errs =ret 21 : 0;
return (errs) ;
}

4.6.2. dsi64c200k_init()

This function is the entry point to initializing the 24DS164C200K API Library and must be the first call into the
Library. This function may be called more than once, but only the first successful call actually initializes the library.
Subsequent calls perform no operation at all. All other API calls return a failure status when the API Library is not

initialized.

Prototype

int dsi64c200k _init (void);

Return Value | Description

0

The operation succeeded.

<0

An error occurred. This is the negative of errno from errno.h.

19
General Standards Corporation, Phone: (256) 880-8787

Example

24DSI164C200K, Linux Device Driver, User Manual

#include <stdio.h>

#include "24dsi64c200k dsl.h"

int dsi64c200k_init_dsl (void)

{

int errs;
int ret;

ret =

dsi64c200k _init ()

if (ret)
printf ("ERROR: dsi64c200k init() returned %d\n", ret);

errs

= ret 21 : 0;

return(errs) ;

}

4.6.3. dsi64c200k_ioctl()

This function is the entry point to performing setup and control operations on a 24DS164C200K board. This function
should only be called after a successful open of the respective device. The specific operation performed varies
according to the request argument. The request argument also governs the use and interpretation of the arg
argument. The set of supported options for the request argument consists of the IOCTL services supported by the
driver, which are defined in section 4.7 beginning on page 23.

Prototype

int dsi64c200k ioctl(int £fd, int request, void* arg);

Argument | Description

fd This is the file descriptor of the device to access.

request | This specifies the desired operation to be performed.

arg This is a request specific argument. Refer to the IOCTL services for additional

information (section 4.7, page 23).

Return Value | Description

0

The operation succeeded.

<0

An error occurred. This is the negative of errno from errno.h.

Example

#include <stdio.h>

#include "24dsi64c200k dsl.h"

int dsi64c200k _ioctl dsl(int fd, int request, void *arg)

{

int errs;
int ret;

ret =

dsi64c200k _ioctl (fd, request, arg);

20
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

if (ret)
printf ("ERROR: dsi64c200k ioctl() returned %d\n",

errs =ret 2 1 : 0;
return (errs) ;

}

4.6.4. dsi64c200k_open()

This function is the entry point to open a connection to a 24DS164C200K board. The device is initialized before the

function returns.

Prototype

int dsi64c200k _open (int device, int share, int* £fd);

Argument | Description

device This is the zero-based index of the 24DS164C200K to access. *

Open the device in Shared Access Mode? If non-zero the device is opened in Shared Access

h > . .
share Mode (see below). If zero the device is opened in Exclusive Access Mode (see below).
The device handle is returned here. The pointer cannot be NULL. Values returned are as
follows.
fd Value | Description
-1 There was an error. The device is not accessible.

>= 0 | This is the handle to use to access the device in subsequent calls.

* If the index value is -1, then the API Library accesses /proc/24dsi64c200k.

Return Value | Description

0 The operation succeeded.

<0 An error occurred. This is the negative of errno from errno.h.
Example

#include <stdio.h>
#include "24dsi64c200k dsl.h"
int dsi64c200k _open dsl (int device, int share, int* fd)
{
int errs;
int ret;

ret = dsi64c200k _open(device, share, f£fd);

if (ret)

printf ("ERROR: dsi64c200k open() returned %d\n", ret);

errs =ret 2 1 : 0;
return (errs) ;

21
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

4.6.4.1. Access Modes

Shared Access Mode:

Shared Access Mode allows multiple applications to access the same device simultaneously. In this mode, the first
successful open request returns with the device in an initialized state. Subsequent successful Shared Access Mode
open requests do not affect the state of the device. Once opened in Shared Access Mode, the device access remains
in this mode until all Shared Access Mode accesses release the device with a close request.

Exclusive Access Mode:

Exclusive Access Mode allows a single application to acquire exclusive access to a device. In this mode, a
successful open request returns with the device in an initialized state. While open in this mode all subsequent open
requests will fail regardless of the access mode requested. Once opened in Exclusive Access Mode, the device
access remains in this mode until released by the application with a close request.

4.6.5. dsi64c200k_read()

This function is the entry point to reading data from an open 24DSI64C200K. This function should only be called
after a successful open of the respective device. The function reads up to bytes bytes from the board. The return
value is the number of bytes actually read.

NOTE: For additional information please refer to the 1/0O Modes section (section 8.2, page 50).

NOTE: If an index of -1 was passed to the dsi64c200k open () call, then read requests will
read from the text file /proc/24dsi64c200k (Section 2.2, page 12).

Prototype

int dsi64c200k read(int fd, void *dst, size t bytes);

Argument | Description
fd This is the file descriptor of the device to access.
dst The data read will be put here.
bytes This is the desired number of bytes to read. This must be a multiple of four (4).
Return Value | Description
0Otobytes The operation succeeded. A value less than bytes indicates that the request timed out.
<0 An error occurred. This is the negative of errno from errno.h.
Example

#include <stdio.h>
#include "24dsi64c200k dsl.h"

int dsi64c200k read dsl(int £fd, wvoid* dst, size t bytes, size t*
aty)
{

int errs;

int ret;

ret = dsi64c200k _read(fd, dst, bytes);

22
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

if (ret < 0)

printf ("ERROR: dsi64c200k read()

if (qty)

gty[0] =
errs = (ret < 0) 21
return (errs) ;

}

4.7. 10CTL Services

(ret < 0) ?

returned %d\n", ret);

0 : (size t) ret;

0;

The 24DSI64C200K API Library and device driver implement the following IOCTL services. Each service is
described along with the applicable dsi64c200k ioctl () function arguments.

4.7.1. DSI64C200K_IOCTL_Al_BUF_CLEAR

This service clears the current content from the input buffer. This service waits for the firmware to complete the
operation before returning, which can take up to three milliseconds at low sample rates. Before returning, this
services clears both the Input Buffer Overflow and Input Buffer Underflow status bits.

Usage
Argument | Description
request | DSI64C200K IOCTL AI BUF CLEAR
arg Not used.

4.7.2. DSI64C200K_IOCTL_Al_BUF_ENABLE

This service enables or disables input to the analog input buffer.

Usage

Argument | Description

request

DSI64C200K IOCTL AI BUF ENABLE

s32%*

arg

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

DSI64C200K AI BUF ENABLE NO

This option disables input to the input buffer.

DSI64C200K AI BUF ENABLE YES

This option enables input to the input buffer.

4.7.3. DSI64C200K_IOCTL_AI_BUF_FILL_LVL

This service reports the analog input buffer’s current fill level.

Usage

Argument | Description

request

DSI64C200K IOCTL AI BUF FILL LVL

arg s32%*

23

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

Valid return values are from zero to 0x40000 (256K).
4.7.4. DSI64C200K_IOCTL_Al_BUF_OVERFLOW
This service operates on the Analog Input Overflow status.

Usage

Argument | Description
request | DSI64C200K IOCTL AI BUF OVERFLOW
arg s32%*

Valid argument values provided to the service are as follows.

Value Description
-1 This option reports if an overflow has occurred.
DSI64C200K _AI_ BUF OVERFLOW_CLEAR | This option clears the overflow status.

DSI64C200K _AI BUF OVERFLOW_TEST | This option reports if an overflow has occurred.

Valid returned values are as follows.

Value Description
DSI64C200K AI BUF OVERFLOW NO | An overflow did not occur.
DSI64C200K AI BUF OVERFLOW YES | An overflow did occur.

4.7.5. DSI64C200K_IOCTL_Al BUF_THR_STS

This service reports the input buffer threshold status. The status is active (or asserted or set) while the buffer fill
level exceeds the buffer threshold setting. The status is idle (or negated or clear) while the buffer fill level is equal to
or below the buffer threshold setting.

Usage

Argument | Description
request | DSI64C200K IOCTL AI BUF THR STS
arg s32%*

Valid returned values are as follows.

Value Description
-1 Retrieve the current setting.
DSI64C200K AI BUF THR STS ACTIVE | The threshold flag is set.

DSI64C200K AT BUF THR STS IDLE The threshold flag is not set.

4.7.6. DSI64C200K_IOCTL_Al_BUF_THRESH
This service sets the fill level at which the input buffer threshold status is asserted.

Usage

Argument | Description
request | DSI64C200K IOCTL AI BUF THRESH
arg s32%*

24
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual
Valid argument values are from zero to 0x40000 (256K), and -1. A value of -1 will return the current threshold
level setting.
4.7.7. DSI64C200K_IOCTL_Al_BUF_UNDERFLOW
This service operates on the Analog Input Underflow status.

Usage

Argument | Description
request | DSI64C200K IOCTL AI BUF UNDERFLOW
arg s32%*

Valid argument values provided to the service are as follows.

Value Description

-1 Report if an underflow has occurred.
DSI64C200K AI BUF UNDERFLOW CLEAR | Clear the underflow status.
DSI64C200K _AI BUF UNDERFLOW_TEST | Reportif an underflow has occurred.

Valid returned values are as follows.

Value Description
DSI64C200K AI BUF UNDERFLOW NO | An underflow did not occur.
DSI64C200K AI BUF UNDERFLOW YES | An underflow did occur.

4.7.8. DSI64C200K_IOCTL_AI_FILTER
This service configures the analog input filter option.

Usage

Argument | Description
request | DSI64C200K IOCTL AI FILTER
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

DSIe4C200K _AI_FILTER LOW_LATENCY | This option selects the low latency filter.
DSI64C200K AI FILTER WIDEBAND This option selects the wideband filter.

4.7.9. DSI64C200K_IOCTL_Al_MODE
This service configures the analog input mode.

Usage

Argument | Description
request | DSTI64C200K IOCTL AI MODE
arg s32*

Valid argument values are as follows.

25
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

Value Description

-1 Retrieve the current setting.

DSI64C200K_AI MODE_DIFF | This option selects differential operation.

DSI64C200K _AI MODE_VREF | This option connects the input channels to the onboard VREF signal.

This option connects the input channels to the onboard zero voltage

DSI64C200K AI MODE ZERO | .
- - - signal.

4.7.10. DSI64C200K_IOCTL_AUTO_CAL_STS

This service reports the auto-calibration status.

Usage
Argument | Description
request | DSI64C200K IOCTL AUTO CAL STS
arg s32%*

Valid argument values returned are as follows.

Value
DSI64C200K AUTO CAL STS ACTIVE
DSI64C200K AUTO CAL STS FAIL
DSI64C200K AUTO CAL STS PASS

Description

An auto-calibration cycle is in progress.

The most recent auto-calibration cycle failed.
The most recent auto-calibration cycle passed.

4.7.11. DSI64C200K_IOCTL_AUTO_CALIBRATE

This service initiates an auto-calibration cycle. Most configuration setting should be made before running an auto-
calibration cycle. The driver waits for the operation to complete before returning.

Usage
Argument | Description
request | DSI64C200K IOCTL AUTO CALIBRATE
arg Not used.

4.7.12. DSI64C200K_IOCTL_AUX_CLOCK

This service configures the operation of the sample clock signal on the auxiliary connector.

Usage
Argument | Description
request | DSI64C200K IOCTL AUX CLOCK
arg s32%*

Valid argument values are as follows.

Value
-1

Description
Retrieve the current setting.

DSI64C200K AUX CLOCK INACTIVE

This option disables the signals operation.

DSI64C200K AUX CLOCK INPUT

This option configures the signal as an input.

DSI64C200K AUX CLOCK OUTPUT

This option configures the signal as an output.

26

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

4.7.13. DSI64C200K_IOCTL_AUX_SYNC
This service configures the operation of the SYNC signal on the auxiliary connector.

Usage

Argument | Description
request | DSI64C200K IOCTL AUX SYNC
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

DSI64C200K _AUX SYNC_ INACTIVE | This option disables the signals operation.
DST64C200K AUX SYNC INPUT This option configures the signal as an input.
DSI64C200K _AUX SYNC_ OUTPUT This option configures the signal as an output.

4.7.14. DSI64C200K_IOCTL_BURST_ENABLE
This service enables or disables input bursting.

Usage

Argument | Description
request | DSI64C200K IOCTL BURST ENABLE
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
DSI64C200K_BURST_ENABLE_NO | This option disables input bursting.
DSI64C200K BURST_ENABLE_YES | This option enables input bursting.

4.7.15. DSI64C200K_IOCTL_BURST_RATE_DIV
This service adjusts the Burst Rate Divisor, which controls the Burst Timer rate.

Usage

Argument | Description
request | DSI64C200K IOCTL BURST RATE DIV
arg s32*

Valid argument values are from zero to OxFFFFFF, and —1. The value -1 retrieves the current setting.
4.7.16. DSI64C200K_IOCTL_BURST_SIZE

This service adjusts the Burst Size, which is the number of scans in a single burst operation.

27
General Standards Corporation, Phone: (256) 880-8787

Usage

Valid argument values are from zero to OxFFFFFF, and -1. The value -1 retrieves the current setting.

24DSI164C200K, Linux Device Driver, User Manual

Argument

Description

request

DSI64C200K IOCTL BURST SIZE

arg

sS32%*

4.7.17. DSI64C200K_IOCTL_BURST_TIMER

This service enables or disables the input bursting timer.

Usage

Argument

Description

request

DSI64C200K IOCTL BURST TIMER

arg

s32%

Valid argument values are as follows.

Value

Description

-1 Retrieve the current setting.
DSI64C200K BURST_TIMER DISABLE | This option disables the input burst timer.
DSI64C200K BURST TIMER ENABLE | This option enables the input burst timer.

4.7.18. DSI64C200K_IOCTL_BURST_TRIGGER

This service initiates a burst operation.

Usage

4.7.19. DSI64C200K

This service selects which of the eight channel groups are to be active during sampling operations. If a bit is set, then
the corresponding channel group is enabled. If a bit is clear, then the corresponding channel group is disabled.

Usage

Argument

Description

request

DSI64C200K IOCTL BURST TRIGGER

arg

Not used.

IOCTL_CHAN_GRP_ACTIVE

Argument

Description

request

DSI64C200K IOCTL CHAN GRP ACTIVE

arg

S32%*

Valid argument values are from zero to OxFF, and —1. The value -1 retrieves the current setting.
4.7.20. DSI64C200K_IOCTL_CHANNELS_READY

This service operates on the Channels Ready status.

28
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

Usage

Argument | Description
request | DSI64C200K IOCTL CHANNELS READY
arg s32%*

Valid argument values provided to the service are as follows.

Value Description

-1 This reports if the status is ready.

DSI64C200K_CHANNELS READY TEST | This reports if the status is ready.

This requests that the driver wait for the status to become

DSI64C200K CHANNELS READY WATIT . X
- - - ready. The driver waits for up to one second.

Valid returned values are as follows.

Value Description
DSI64C200K CHANNELS READY NO | The status is not ready.
DSI64C200K CHANNELS READY YES | The status is ready.

4.7.21. DSI64C200K_IOCTL_CLK_SRC
This service configures the input clocking source option.

Usage

Argument | Description
request | DSI64C200K IOCTL CLK SRC
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

DSI64C200K CLK SRC_EXT FGEN | This replaces the internal FGEN signal with the external clock.

DSI64C200K CLK SRC_EXT MCLK | This replaces the internal McLK signal with the external clock.

DSI64C200K_CLK SRC_RATE GEN | This option selects the internal Rate Generator.

4.7.22. DSI64C200K_IOCTL_CONTROL_MODE
This service configures the board for initiator or target mode operation.

Usage

Argument | Description
request | DSI64C200K IOCTL CONTROL MODE
arg s32*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

DSI64C200K_CONTROL MODE INITIATOR | This option selects initiator mode operation.

DSI64C200K CONTROL MODE TARGET This option selects target mode operation.
29

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

4.7.23. DSI64C200K_IOCTL_DATA_FORMAT

This service configures the data encoding format.

Usage

Argument | Description

request | DSI64C200K IOCTL DATA FORMAT

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

DSI64C200K DATA FORMAT 2S COMP

This option selects the Twos Compliment data format.

DSI64C200K DATA FORMAT OFF BIN

This option selects the Offset Binary encoding format.

4.7.24. DSI64C200K_IOCTL_DATA_WIDTH

This service configures the bit width of the converted input data.

Usage

Argument | Description

request | DSI64C200K IOCTL DATA WIDTH

arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

DSI64C200K_DATA WIDTH_16 | This option selects 16-bits of resolution.

DSI64C200K_DATA WIDTH_18 | This option selects 18-bits of resolution.

DSI64C200K_DATA WIDTH_20 | This option selects 20-bits of resolution.

DSI64C200K_DATA WIDTH_24 | This option selects 24-bits of resolution.

4.7.25. DSI64C200K_IOCTL_DIO_DIR_OUT

This service sets the Digital 1/0 Port pins as either input or output. If a bit is set, then the corresponding port pin is

an output. If a bit is clear, then the corresponding port pin is an input.

Usage

Argument | Description

request | DSI64C200K IOCTL DIO DIR OUT

arg s32%*

Valid argument values are from zero to OxF, and —1. The value -1 retrieves the current setting.

4.7.26. DSI64C200K_IOCTL_DIO_READ

This service reads the value of the Digital 1/0 Port pins. If a pin is configured as an output the value returned is the

output value. If a pin is configured as an input the value returned in the value on the pin at the cable interface.

30

General Standards Corporation, Phone: (256) 880-8787

Usage

24DSI164C200K, Linux Device Driver, User Manual

Argument | Description
request | DSI64C200K IOCTL DIO READ
arg s32%*

Valid values returned are from zero to 0xF.

4.7.27. DSI64C200K_IOCTL_DIO_WRITE

This service writes to the Digital 1/0O Port pins.

Usage

Valid argument values are from zero to 0xF, and -1. A value of -1 will return the current setting. Writes to output
pins appear immediately at the cable interface. Writes to input pins are latched and will appear when the pin is

Argument | Description
request | DSI64C200K IOCTL DIO WRITE
arg s32%*

subsequently configured as an output.

4.7.28. DSI64C200K_IOCTL_EXT_CLK_SRC

This service configures the source for the external clock output.

Usage

Argument | Description
request | DSI64C200K IOCTL EXT CLK SRC
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
DSIe4C200K_EXT CLK_SRC_GEN | This option selects the internal Rate Generator.
DSIe4C200K_EXT CLK_SRC_MCLK | This option selects the internal MCLK signal.

4.7.29. DSI64C200K_|IOCTL_FGEN_DIV

This service selects the FGEN divisor value used to generate the sample clock.

Usage
Argument | Description
request | DSTI64C200K IOCTL FGEN DIV
arg s32*

Valid argument values are as follows.

Value Description
-1 Retrieve the current setting.
DSI64C200K_FGEN_DIV_1 | This leaves the FGEN signal as is.

31
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

DSI64C200K_FGEN_DIV_2 | This divides the FGEN signal by two.

DSI64C200K_FGEN_DIV_4 | This divides the FGEN signal by four.

DSI64C200K_FGEN_DIV_8 | This divides the FGEN signal by eight.

DSI64C200K_FGEN_DIV_16 | This divides the FGEN signal by 16.

4.7.30. DSI64C200K_IOCTL_INIT_ADCS

This service initializes the boards Analog-to-Digital Converters. The driver waits for initialization to complete

before returning.

Usage

Argument | Description

request | DSI64C200K IOCTL INIT ADCS

arg Not used.

4.7.31. DSI64C200K_IOCTL_INITIALIZE

This service returns all driver interface settings for the board to the state they were in when the board was first
opened. This includes both hardware-based settings and software-based settings. The driver waits for initialization to

complete before returning.

Usage

Argument | Description

request | DSI64C200K IOCTL INITIALIZE

arg Not used.

4.7.32. DSI64C200K_|IOCTL_IRQ_SEL

This service selects which firmware interrupt source may generate an interrupt.

Usage

Argument | Description

request | DSI64C200K IOCTL IRQ SEL

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

DSI64C200K IRQ AI BUF THR H2L

This refers to a high-to-low transition of the input buffer
threshold flag.

DSI64C200K IRQ AI BUF THR L2H

This refers to a low-to-high transition of the input buffer
threshold flag.

DSI64C200K IRQ AI BURST DONE

This refers to completion of a burst operation.

DSI64C200K IRQ AUTO CAL DONE

This refers to Auto-Calibration completion.

DSI64C200K IRQ CHAN READY H2L

This refers to assertion of the Channels Ready status.

DSI64C200K IRQ CHAN READY L2H

This refers to negating of the Channels Ready status.

DSI64C200K IRQ INIT DONE

This refers to completion of an initialization operation.

32

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

4.7.33. DSI64C200K_IOCTL_MCLK_DIV
This service selects the McLK divisor value, which is used to produce a desired sample rate.

Usage

Argument | Description
request | DSI64C200K IOCTL FGEN DIV
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
DSI64C200K MCLK DIV_4 FAST This divides the McLK signal by four.
DSI64C200K _MCLK DIV_8 MEDIAN | This divides the MCLK signal by eight.
DSI64C200K MCLK DIV 32 ECO This divides the McLK signal by 32.

4.7.34. DSI64C200K_IOCTL_NREF
This service configures the internal rate generator’s NREF value.

Usage

Argument | Description
request | DSI64C200K IOCTL NREF
arg s32%*

Valid argument values are from 20 to 300, and -1. The value -1 returns the current setting. The optimal range is from
25 to 100.

4.7.35. DSI64C200K_IOCTL_NVCO
This service configures the internal rate generator’s NvCO value.

Usage

Argument | Description
request | DSI64C200K IOCTL NVCO
arg s32%*

Valid argument values are from 20 to 300, and -1. The value -1 returns the current setting. The optimal range is from
25 to 100.

4.7.36. DSI64C200K_IOCTL_OVER_SAMPLE
This service selects the analog input over sampling rate, which is used to produce a desired sample rate.

Usage

Argument | Description
request | DSI64C200K IOCTL OVER SAMPLE
arg s32%*

33
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

DSI64C200K OVER SAMPLE 32

This refers to the 32x over sampling rate.

DSI64C200K OVER SAMPLE 64

This refers to the 64x over sampling rate.

DSI64C200K OVER SAMPLE 128

This refers to the 128x over sampling rate.

DSI64C200K OVER SAMPLE 1024

This refers to the 1024x over sampling rate.

4.7.37. DSI64C200K_IOCTL_QUERY

This service queries the driver for various pieces of information about the board and the driver.

Usage
Argument | Description
request | DSI64C200K IOCTL QUERY
arg s32%*

Valid argument values are as follows.

Value

Description

DSI64C200K QUERY AUTO CAL MS

This returns the maximum duration of the Auto Calibration
cycle in milliseconds.

DSI64C200K QUERY CHANNEL MAX

This returns the maximum number of input channels
supported by all boards of the same model as the board
accessed.

DSI64C200K_QUERY CHANNEL QTY

This returns the actual number of input channels on the
current board.

DSI64C200K _QUERY COUNT

This returns the number of query options supported by the
IOCTL service.

DSI64C200K_QUERY DEVICE TYPE

This returns the identifier value for the board’s type. The
value should equal GSC DEV TYPE 24DSI64C200K.

DSI64C200K QUERY FGEN MAX

This returns the maximum rate generator output (FGEN) in
hertz.

DSI64C200K QUERY FGEN MIN

This returns the minimum rate generator output (FGEN) in
hertz.

DSI64C200K QUERY FIFO SIZE

This returns the size of the input buffer in samples.

DSI64C200K QUERY FILTER FREQ

This returns the installed filter frequency in hertz. The value
zero is returned if no filter is installed and -1 is returned if
the filter frequency is not known to the driver.

DSI64C200K QUERY FREF DEFAULT

This gives the default reference frequency (FREF) in hertz.

DSI64C200K QUERY FSAMP MAX

This gives the maximum sample rate (FSAMP) in S/S.

DSI64C200K QUERY FSAMP MIN

This gives the minimum sample rate (FSAMP) in S/S.

DSI64C200K QUERY FW REV

This gives the firmware revision number.

DSI64C200K QUERY INIT ADC MS

This returns the duration of an ADC initialization in
milliseconds.

DSI64C200K QUERY INIT MS

This returns the duration of a board initialization in

milliseconds.

DSI64C200K QUERY MASTER CLOCK

This gives the frequency of the master clock used to
configure the burst rate.

DSI64C200K QUERY MCLK MAX

This gives the maximum supported McCLK frequency.

DSI64C200K QUERY MCLK MIN

This gives the minimum supported McLK frequency.

DSI64C200K QUERY NREF MAX

This returns the maximum supported NREF value.

34

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

DSI64C200K QUERY NREF MIN This returns the minimum supported NREF value.

DSI64C200K_QUERY NREF_OPT_MAX | This returns the maximum optimal NREF value.

DSI64C200K_QUERY NREF_OPT_ MIN | This returns the minimum optimal NREF value.

DSI64C200K_QUERY NVCO MAX This returns the maximum supported Nvco value.

DSI64C200K_QUERY NVCO MIN This returns the minimum supported Nvco value.

DSI64C200K_QUERY NVCO_OPT_MAX | This returns the maximum optimal Nvco value.

DSI64C200K_QUERY NVCO_OPT_MIN | This returns the minimum optimal Nvco value.

DSI64C200K QUERY V RANGE

This returns the board’s factory configured voltage range.
See the option values below.

The values returned for the DSI64C200K_QUERY V_RANGE query option are as follows.

Value

Description

-1

The voltage range is not recognized by the driver.

DSI64C200K QUERY V_RANGE_ 10 | The board supports the voltage ranges of +10 volts.

4.7.38. DSI64C200K_IOCTL_REG_MOD

This service performs a read-modify-write of a 24DS164C200K register. This includes only the GSC firmware
registers. The PCl and PLX Feature Set Registers are read-only. Refer to 24dsi64c200k.h for a complete list of
the GSC firmware registers.

Usage

Argument | Description

request | DSI64C200K IOCTL REG MOD

arg

gsc reg t*

Definition

typedef struct

{

u32 regqg;

u32 value;

u32 mask;
} gsc_reg t;

Fields

Description

reg

This is set to the identifier for the register to access.

value

This contains the value for the register bits to modify.

mask

This specifies the set of bits to modify. If a bit here is set, then the respective register bit is
modified. If a bit here is zero, then the respective register bit is unmodified.

4.7.39. DSI64C200K_IOCTL_REG_READ

This service reads the value of a 24DSI64C200K register. This includes the PCI registers, the PLX Feature Set
Registers and the GSC firmware registers. Refer to 24dsi64c200k.h and gsc_pci9056.h for the complete
list of accessible registers.

Usage

Argument | Description

request | DSI64C200K IOCTL REG READ

arg

gsc reg t*

35
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

Definition

typedef struct
{
u32 reg;
u32 value;
u32 mask;
} gsc_reg t;

Fields | Description

reg This is set to the identifier for the register to access.
value | This is the value read from the specified register.
mask | This is ignored for read requests.

4.7.40. DSI64C200K_IOCTL_REG_WRITE

This service writes a value to a 24DS164C200K register. This includes only the GSC firmware registers. The PCI
and PLX Feature Set Registers are read-only. Refer to 24dsi64c200k.h for a complete list of the GSC firmware

registers.

Usage
Argument | Description
request | DSI64C200K IOCTL REG WRITE
arg gsc reg t*

Definition

typedef struct
{
u32 reg;
u32 value;
u32 mask;
} gsc_reg t;

Fields | Description

reg This is set to the identifier for the register to access.
value | This is the value to write to the specified register.
mask | This is ignored for write requests.

4.7.41. DSI64C200K_|IOCTL_RX_IO_ABORT

This service aborts an ongoing dsi64c200k read () request. The service will wait for up to the read 1/O
timeout period for the request to complete.

Usage

Argument | Description
request | DSI64C200K IOCTL RX IO ABORT

arg s32%*

The results are reported as one of the following values.

36
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

Value Description
DSI64C200K_IO ABORT NO | A read request was not aborted.
DSI64C200K_IO_ABORT_YES | Anongoing read request was aborted.

4.7.42. DSI64C200K_IOCTL_RX_IO_MODE
This service sets the 1/0 mode used for data read requests.

Usage

Argument | Description
request | DSI64C200K IOCTL RX IO MODE
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

GSC_IO_MODE_BMDMA | Use Block Mode DMA.

GSC_IO_MODE_DMDMA | Use Demand Mode DMA (transfer data as it becomes possible to do so).
GSC_IO MODE_PIO Use P10 mode, which is repetitive register access.

4.7.43. DSI64C200K_IOCTL_RX_IO_OVERFLOW

This service configures the read service to check for a data buffer overflow before performing read operations.
Sampled data is lost when there is an overflow

Usage

Argument | Description
request | DSI64C200K IOCTL RX IO OVERFLOW
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

DSI64C200K IO OVERFLOW_CHECK | This option specifies that the check be performed.
DSI64C200K IO OVERFLOW_IGNORE | This option specifies that the check not be performed.

4.7.44. DSI64C200K_IOCTL_RX_IO_TIMEOUT
This service sets the timeout limit for read requests. The value is expressed in seconds.

Usage

Argument | Description
request | DSI64C200K IOCTL RX IO TIMEOUT
arg s32*

Valid argument values are in the range from zero to 3600, -1, and DSI64C200K_IO TIMEOUT INFINITE.A
value of zero tells the driver not to sleep in order to wait for more data, and should only be used with PIO mode
reads. A value of -1 is used to retrieve the current setting. If the option DSI64C200K_ IO TIMEOUT INFINITE
is used, then the driver will wait indefinitely rather than timing out. The default is 10 seconds.

37
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

4.7.45. DSI64C200K_IOCTL_RX_IO_UNDERFLOW

This service configures the read service to check for a data buffer underflow before performing read operations.
Indeterminate data is returned when there is an underflow.

Usage

Argument | Description
request | DSI64C200K IOCTL RX IO UNDERFLOW
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.
DSI64C200K_IO_UNDERFLOW_CHECK | This option specifies that the check be performed.
DSI64C200K IO UNDERFLOW_IGNORE | This option specifies that the check not be performed.

4.7.46. DSI64C200K_IOCTL_SW_SYNC

This service initiates an ADC sync operation and, if in initiator mode, also generates an external sync output. The
result of issuing a sync is dependent on the DSI64C200K IOCTL SW SYNC MODE setting (refer to section
4.7.47 on page 38). When initiating this operation, it is the application’s responsibility to wait for the Channels
Ready bit to be asserted.

Usage

Argument | Description
request | DSI64C200K IOCTL SW SYNC

arg Not used.

4.7.47. DSI64C200K_IOCTL_SW_SYNC_MODE
This service sets the context of the Software Sync operation.

Usage

Argument | Description
request | DSI64C200K IOCTL SW SYNC MODE
arg s32%*

Valid argument values are as follows.

Value Description

-1 Retrieve the current setting.

This option causes a sync to clear the input buffer when

DSI64C200K SW SYNC MODE CLR BUF -
- = — - = there is a Software Sync request.

Synchronize input channel scanning when there is a

DSI64C200K SW SYNC MODE SYNC
- - - Software Sync request.

4.7.48. DSI64C200K_IOCTL_SYNC_SRC

This service selects the source for signals generating a SYNC operation.

38
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

Usage

Argument | Description

request | DSI64C200K IOCTL SYNC SRC

arg s32%*

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

DSI64C200K_SYNC SRC_EXT BCR

This option enables SYNC generation from either the
external SYNC Input signal or the Synchronize Inputs bit in
the Board Control Register.

DSI64C200K_SYNC SRC_TIMER BCR

This option enables SYNC generation from either the
internal burst timer or the Synchronize Inputs bit in the
Board Control Register.

4.7.49. DSI64C200K_|OCTL_WAIT_CANCEL

This service resumes all threads blocked via the DSI64C200K_IOCTL WAIT EVENT IOCTL service (section
4.7.50, page 40), according to the provided criteria. When a blocked thread is waiting for any event specified in the

structure, then the thread is resumed.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver
initiated waits are unaffected by application cancel requests.

Usage
Argument | Description
request | DSI64C200K IOCTL WAIT CANCEL
arg gsc wait t*

Definition

typedef struct
{

u32 flags;
u32 main;
u32 gsc;
u32 alt;
u32 io;

u32 timeout ms;
u32 count;
} gsc_wait t;

Fields Description

flags This is unused by wait cancel operations.

main This specifies the set of GSC_WAIT MAIN * events whose wait requests are to be
cancelled. Refer to section 4.7.50.2 on page 41.

gsc This specifies the set of DST64C200K WAIT GSC_* events whose wait requests are
to be cancelled. Refer to section 4.7.50.3 on page 41.

alt This is unused by the 24DS164C200K driver and should be zero.

39

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

io

This specifies the set of GSC_WAIT IO * events whose wait requests are to be
cancelled. Refer to section 4.7.50.4 on page 41.

timeout ms

This is unused by wait cancel operations.

count

Upon return this indicates the number of waits that were cancelled.

4.7.50. DSI64C200K_IOCTL_WAIT_EVENT

This service blocks a thread until any one of a specified set of events occurs, or until a timeout lapses, whichever
occurs first. The set of possible events to wait for are specified in the structure’s main, gsc, alt and io fields. All
field values must be valid and at least one event must be specified. If the thread is resumed because one of the
referenced events has occurred, then the bit for the respective event is the only event bit that will be set. All other
event bits and fields will be zero. (Multiple event bits will be set only if the events occur simultaneously.)

Usage
Argument | Description
request | DSI64C200K TIOCTL WAIT EVENT
arg gsc wait t*

Definition

NOTE: The service waits only for the first of the specified events, not for all specified events.

NOTE: A wait timeout is reported via the gsc_wait_t structure’s £lags field having the
GSC_WAIT FLAG TIMEOUT flag set, rather than via an ETIMEDOUT error.

typedef struct

{

u32 flags;

u32 main;

u32 gsc;

u32 alt;

u32 io;

u32 timeout ms;
u32 count;

} gsc_wait t;

Fields Description

flags This must initially be_ zero. Upon return this indicates the reason that the thread was
resumed. Refer to section 4.7.50.10n page 41.

main This specifies any number of GSC_WAIT MAIN * events that the thread is to wait for.
Refer to section 4.7.50.2 on page 41.

gsc This specifies any number of DST64C200K_WAIT GSC_* events that the thread is to
wait for. Refer to section 4.7.50.3 on page 41.

alt This is unused by the 24DS164C200K driver and must be zero.

io This specifies any number of GSC_WAIT IO * events that the thread is to wait for.

Refer to section 4.7.50.4 on page 41.

timeout ms

This specified the maximum amount of time, in milliseconds, that the thread is to wait
for any of the referenced events. A value of zero means do not timeout at all. If non-
zero, then upon return the value will be the approximate amount of time actually waited.

count

This is unused by wait event operations and must be zero.

40
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

4.7.50.1. gsc_wait t.flags Options

Upon return from a wait request the wait structure’s flags field will indicate the reason that the thread was
resumed. Only one of the below options will be set.

Fields

Description

GSC WAIT FLAG CANCEL

The wait request was cancelled.

GSC WAIT FLAG DONE

One of the referenced events occurred.

GSC WAIT FLAG TIMEOUT

The timeout period lapsed before a referenced event occurred.

4.7.50.2. gsc_wait t.main Options

The wait structure’s main field may specify any of the below primary interrupt options. These interrupt options are
supported by the 24DSI64C200K and other General Standards products.

Fields

Description

GSC_WAIT MAIN DMAO

This refers to the DMA Done interrupt on DMA engine humber zero.

GSC_WAIT MAIN DMAL

This refers to the DMA Done interrupt on DMA engine number one.

GSC WAIT MAIN GSC

This refers to any of the Interrupt Control/Status Register interrupts.

GSC_WAIT MAIN OTHER

This generally refers to an interrupt generated by another device sharing the
same interrupt as the 24DS164C200K.

GSC WAIT MAIN PCI

This refers to any interrupt generated by the 24DS164C200K.

GSC WAIT MAIN SPURIOUS

This refers to board interrupts which should never be generated.

GSC WAIT MAIN UNKNOWN

This refers to board interrupts whose source could not be identified.

4.7.50.3. gsc_wait t.gsc Options

The wait structure’s gsc field may specify any combination of the below interrupt options. These are the interrupt
options referenced in the Board Control Register. Applications are responsible for selecting the desired interrupt
options. Refer to DSI64C200K_IOCTL IRQ SEL (section 4.7.32, page 32).

Value

Description

DSI64C200K WAIT GSC_AI BUF THR H2L

This refers to a high-to-low transition of the input buffer
threshold flag.

DSI64C200K WAIT GSC AI BUF THR L2H'

This refers to a low-to-high transition of the input buffer
threshold flag.

DSI64C200K WAIT _GSC_AI BURST DONE This refers to completion of an input burst operation.

DSI64C200K WAIT GSC AUTO CAL DONE This refers to Auto-Calibration completion.

DSI64C200K WAIT GSC_CHAN READY H2L | This refers to negation of the Channels Ready status.

DSI64C200K _WAIT GSC_CHAN READY L2H | This refers to assertion of the Channels Ready status.

DSI64C200K WAIT GSC INIT DONE This refers to initialization completion.

4.750.4. gsc_wait t.io Options

The wait structure’s io field may specify any of the below event options. These events are generated in response to

application read requests.

Fields

Description

GSC WAIT IO RX ABORT

This refers to read requests which have been aborted.

GSC WAIT IO RX DONE

This refers to read requests which have been satisfied.

GSC WAIT IO RX ERROR

This refers to read requests which end due to an error.

GSC WAIT IO RX TIMEOUT

This refers to read requests which end due to the timeout period lapse.

41

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

4.7.51. DSI64C200K_IOCTL_WAIT_STATUS

This service counts all threads blocked via the DSI64C200K_IOCTL WAIT EVENT IOCTL service (section
4.7.50, page 40), according to the provided criteria. A match is made when a waiting thread’s wait criteria matches
any of the criteria specified in the structure passed to this service.

NOTE: The driver itself makes use of the wait services for various internal operations. Driver
initiated waits are ignored by application status requests.

Usage
Argument | Description
request | DSI64C200K IOCTL WAIT STATUS
arg gsc wait t*

Definition

typedef struct
{

u32 flags;
u32 main;
u32 gsc;
u32 alt;
u32 io;

u32 timeout ms;
u32 count;
} gsc_wait t;

Fields Description

flags This is unused by wait status operations.

This specifies the set of GSC_WAIT MAIN * events whose wait requests are to be
counted. Refer to section 4.7.50.2 on page 41.

main

This specifies the set of DST64C200K _WAIT GSC_* events whose wait requests are

g=c to be counted. Refer to section 4.7.50.3 on page 41.

alt This is unused by the 24DS164C200K driver and should be zero.

This specifies the set of GSC WAIT IO * events whose wait requests are to be
counted. Refer to section 4.7.50.4 on page 41.

io

timeout ms | Thisis unused by wait status operations.

count Upon return this indicates the number of waits that met any of the specified criteria.

4.7.52. DSI64C200K_IOCTL_XCVR_TYPE
This service configures the transceiver type for the digital interface signals.

Usage

Argument | Description
request | DSI64C200K IOCTL XCVR TYPE
arg s32*

42
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

Valid argument values are as follows.

Value

Description

-1

Retrieve the current setting.

DSI64C200K XCVR TYPE LVDS

This option selects LVDS signaling.

DSI64C200K XCVR TYPE TTL

This option selects TTL signaling.

43

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

5. The Driver

NOTE: Contact General Standards Corporation if additional driver functionality is required.

5.1. Files

The device driver source files are summarized in the table below.

File Description
driver/*.c The driver source files.
driver/*.h The driver header files.
driver/start Shell script to install the driver executable and device nodes.
driver/24dsi64c200k.h | Thisis the driver interface header file.
driver/Makefile This is the driver make file.

5.2. Build

NOTE: Building the driver requires installation of the kernel headers.
Follow the below steps to build the driver.
1. Change to the directory where the driver and its sources are installed (.../driver/).
2. Remove existing build targets using the below command line.
make clean
3. Build the driver by issuing the below command.
make
NOTE: Due to the differences between the many Linux distributions some build errors may

occur. These errors may include system header location differences, which should be easily
corrected.

5.3. Startup

NOTE: The driver will have to be built before being used as it is provided in source form only.
The startup script used in this procedure is designed to ensure that the driver module in the install directory is the
module that is loaded. The currently loaded driver is first unloaded before attempting to load the module from the
script’s directory. The script also deletes and recreates the device nodes. This is done to ensure that the device nodes
in use have the same major number as assigned dynamically to the driver by the kernel, and so that the number of
device nodes correspond to the number of boards identified by the driver.
5.3.1. Manual Driver Startup Procedures
Start the driver manually by following the below listed steps.

NOTE: The following steps may require elevated privileges.

1. Change to the directory where the driver sources are installed (.../driver/.).

44
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

2. Install the driver module and create the device nodes by executing the below command. If any errors are
encountered then an appropriate error message will be displayed.

./start
NOTE: This script must be executed each time the host is rebooted.
NOTE: The 24DSI64C200K device node major number is assigned dynamically by the kernel.
The minor numbers and the device node suffix numbers are index numbers beginning with zero,

and increase by one for each additional board installed.

3. Verify that the device driver module has been loaded by issuing the below command and examining the output.
The module name 24dsi64c200k should be included in the output.

lsmod

4. Verify that the device nodes have been created by issuing the below command and examining the output. The
output should include one node for each installed board.

ls -1 /dev/24dsi64c200k.*

5.3.2. Automatic Driver Startup Procedures

Start the driver automatically with each system reboot by following the below listed steps.

1. Locate and edit the system startup script rc. local, which should be inthe /etc/rc.d/ directory. Modify
the file by adding the below line so that it is executed with every reboot. The example is based on the driver
being installed in /usr/src/linux/drivers/, though it may have been installed elsewhere.

/usr/src/linux/drivers/24dsi64c200k/driver/start

NOTE: For systemd installations the file rc.local may be located under the /etc/
directory rather than under /etc/rc.d/.

2. Load the driver and create the required device nodes by rebooting the system.

3. Verify that the driver is loaded and that the device nodes have been created. Do this by following the
verification steps given in the manual startup procedures.

5.3.2.1. File rc.local Not Present

Some distributions may not install a default version of rc.local. Some may not even create the directory
/etc/rc.d/. If the directory is not present, then it may be created. The directory must be created with the owner
and group set to root. The directory permissions must be set to rwxr-xr-x. If the file /etc/rc.d/rc.local
is not present, then it too may be created. The file must also be created with the owner and group set to root.
Additionally, the file permissions must also be set to rwxr-xr-x. After the directory and file are created as
described, reboot to verify boot time loading of the driver. Here is an example of a default version of rc.local.

#!/bin/bash

Add you local content here.

45
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

5.3.2.2. Default rc.local File Permissions

The rc.local script may fail to run at boot time because some distributions install a default version of the file
without execute permissions. Without execute permissions, boot time invocation of the script fails, which inhibits
boot time loading of the driver. If this is the case, then change the file permissions to rwxr-xr-x. After the file
permissions are adjusted as described, reboot to verify boot time loading of the driver.

5.3.2.3. systemd Installations

With the advent of the systemd startup implementation, rc.local may be accessed via a systemd startup
service. The service name may be rc-local, rc-local.service or something similar. This service may or
may not be enabled by default. If the service is disabled, then the script will not execute, which prevents boot time
loading of the driver. The service can be enabled with the below command line. After the service is enabled, reboot
to verify boot time loading of the driver.

systemctl enable rc-local

NOTE: For systemd installations the file rc.local may be located under the /etc/
directory rather than under /etc/rc.d/.

5.3.2.4. systemd and rc.local Timing

If the above steps have been performed but the driver still does not start then examine the dmesg output for driver
messages. If the output shows that the driver starts and immediately stops, then the problem may be timing. That is,
since systemd doesn’t serialize startup initialization as done in the past, driver loading may fail if required services
have not completed their own initialization. If this is the problem, then it may be corrected simply by inserting a
delay in rc.local prior to it calling the driver’s start script (i.e., sleep for one or more seconds).

5.3.2.5. SElinux Implications
If not disabled, then SElinux may prevent boot time loading of the driver. If this is the case, then it can be verified
and corrected using SElinux related tools and utilities. First, install the necessary software using the below
command. (As necessary, replace the yum command line with that which is available for your distribution.)

yum install setroubleshoot setools
Next, run the below command to determine if SElinux is preventing the driver from loading at boot time.

sealert —-a /var/log/audit/audit.log
If SElinux is preventing the driver from loading, then the output from the above command should include a
reference to the driver’s start script, the insmod command that loads the driver or the name of the driver
executable. If so, then the output should also indicate the commands necessary to resolve the issue. The following is
an example of the instructions given when the culprit is insmod, which is the start script command that loads the

driver. After running these commands reboot the system to verify boot time loading of the driver.

ausearch -c 'insmod' --raw | audit2allow -M my-insmod
semodule -X 300 -i my-insmod.pp

5.4. Verification

Follow the below steps to verify that the driver has been properly installed and started.

46
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

1. Verify that the file /proc/24dsi64c200k is present. If the file is present then the driver is loaded and
running. Verify the file’s presence by viewing its content with the below command.

cat /proc/24dsi64c200k
5.5. Version
The driver version number can be obtained in a variety of ways. It is reported by the driver both when the driver is
loaded and when it is unloaded (depending on kernel configuration options, this may be visible only in places such

as /var/log/messages). Itis reported in the text file /proc/24dsi64c200k while the driver is loaded and
running. The version number is also given in the file release. txt inthe root install directory.

5.6. Shutdown
Shutdown the driver following the below listed steps.
NOTE: The following steps may require elevated privileges.
1. If the driver is currently loaded then issue the below command to unload the driver.
rmmod 24dsi64c200k

2. Verify that the driver module has been unloaded by issuing the below command. The module name
24dsi64c200k should not be in the listed output.

lsmod

47
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

6. Document Source Code Examples

The source code examples included in this document are built into a statically linkable library usable with console
applications. The purpose of these files is to verify that the documentation samples compile and to provide a library
of working sample code to assist in a user’s learning curve and application development effort.

6.1. Files

The library files are summarized in the table below.

File Description
docsrc/*.c These are the C source files.
docsrc/makefile This is the library make file.
docsrc/makefile.dep This is an automatically generated make dependency file.
include/24dsi64c200k dsl.h | Thisis the primary utility header file.
1ib/24dsi64c200k dsl.a This is the statically linkable library file.

6.2. Build

The library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the
below steps.

1. Change to the directory where the documentation sources are installed (.../docsrc/).
2. Remove existing build targets by issuing the below command.
make clean
3. Compile the sample files and build the library by issuing the below command.
make
6.3. Library Use
The library is used both at application compile time and at application link time. At compile time include the below

listed header file in each source file using a component of the library interface. At link time include the below listed
library file with the objects being linked with the application.

Description File Location
Header File 24dsi64c200k dsl.h | ../include/
Static Link Library | 24dsi64c200k dsl.a | ../1ib/

48
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

7. Utility Source Code

The driver archive includes a body of utility services built into a statically linkable library that is usable with console
applications. The primary purpose of the services is both for code reuse in the sample applications and to provide
wrappers, mostly visual, around the driver’s IOCTL services. The aim of the visual wrappers is to facilitate
structured console output for the sample applications. An additional purpose of these utility services is to provide a
library of working sample code to assist in a user’s learning curve and application development effort.

7.1. Files

The library files are summarized in the table below.

File Description
utils/util *.c These are device specific utility source files.
utils/gsc *.c These are device and OS independent utility source files.
utils/os_*.c These are OS specific utility source files.
utils/makefile This is the library make file.
utils/makefile.dep This is an automatically generated make dependency file.
include/24dsi64c200k utils.h | Thisis the primary utility header file.
1ib/24dsi164c200k utils.a This is the statically linkable library file.

7.2. Build

The library is built via the Overall Make Script (section 2.7, page 13), but can be built separately following the
below steps.

1. Change to the directory where the utility sources are installed (.../utils/).
2. Remove existing build targets by issuing the below command.

make clean
3. Compile the sample files and build the library by issuing the below command.

make

7.3. Library Use

The library is used both at application compile time and at application link time. At compile time include the below
listed header file in each source file using a component of the library interface. At link time include the below listed
library file with the objects being linked with the application.

Description File Location
Header File 24dsi64c200k utils.h | ../include/

Static Link Libraries | 24dsi64c200k utils.a | ../1ib/

49
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

8. Operating Information

This section explains some basic operational procedures for using the 24DSI164C200K. This is in no way intended to
be a comprehensive guide. This is simply to address a very few issues relating to their use.

8.1. Analog Input Configuration

The basic steps for Analog Input configuration are illustrated in the utility function noted below. The table also gives
the location of the source file, the header file and the corresponding library containing the executable code. The
referenced files are included via the Main Header and Main Library.

Item Name/File Location
Function dsi64c200k config ai () | Source File
Source File | util config ai.c ./utils/
Header File | 24dsi64c200k utils.h ../include/
Library File | 24dsi164c200k utils.a ../1ib/

8.2. 1/0 Modes

All data read requests move the requested data from the board’s input buffer, to an intermediate driver buffer, then
from there to application memory. The data is processed in chunks no larger than the size of the transfer buffer. The
transfer buffer size is typically the size of the input buffer, or larger, unless insufficient memory is available to the
driver. The process used to move data from the input buffer to the intermediate buffer is according to the 1/0O mode
selection.

8.2.1. PIO - Programmed 1/O

In PIO mode the driver reads data by repetitive registers reads from the input data buffer register until either the
request is satisfied or the 1/O timeout expires, whichever occurs first.

8.2.2. BMDMA - Block Mode DMA

For Block Mode DMA the driver initiates DMA transfers only after a sufficient volume of data has been received
into the input buffer. After that amount of data is in the input buffer the driver initiates a DMA then sleeps until the
DMA Done interrupt is received. Using this DMA mode, a user request is typically satisfied via a number of smaller
DMA transfers.

8.2.3. DMDMA - Demand Mode DMA
This DMA mode is similar to the Block Mode, except that the DMA transfer is initiated immediately. Here however,
the actual movement of data occurs as the data becomes available in the input buffer instead of after it has been

received. Using this DMA mode, a user request is divided into smaller DMA transfers only if the request exceeds
the size of the driver’s transfer buffer.

8.3. Debugging Aids

The driver package includes the following items useful for development and/or debugging aids.

8.3.1. Device Identification

When communicating with technical support complete device identification is virtually always necessary. The id
example application is provided for this specific purpose. This is a text only console application. The output can be

piped to a file, which can then be emailed to GSC technical support when requested. Locate the application as
follows.

50
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

Description | File | Location
Application | id | ../id/

8.3.2. Detailed Register Dump

Among the utility services provided is a function to generate a detailed listing of the board’s registers to the console.
When used, the function is typically used to verify the board’s configuration. In these cases, the function should be
called just prior to the first read operation. When intended for sending to GSC tech support, please set the detail
argument to 1. The function arguments are as follows. The utility location is given in the subsequent table.

Argument | Description
fd This is the file descriptor used to access the device.
detail If non-zero the GSC register dump will include details of each register field.

Description | File/Name Location
Function dsi64c200k reg list () | Source File
Source File | util reg.c ./utils/

Header File | 24dsi64c200k utils.h |../include/
Library File | 24dsi64c200k utils.a |../1lib/

8.4. Multi-Board Synchronization

Multi-board synchronization is a feature of the 24DSI164C200K that enables two or more boards to sample analog
input data in lock-step. Exercising this feature requires the boards to operate synchronously from the same clock
source. This is done using the clock and sync signals on the cable interface. Though there are numerous varying
ways of configuring the boards and of wiring the signals, the two basic configurations are described below.

8.4.1. Star Configuration

The star configuration generally permits all boards in the setup to operate with the least possible phase shift from
one board to the next. This is accomplished by configuring the devices as given in the table below and by wiring the
clock and sync signals so that they follow as identical a path as possible from the initiator’s output to the input of the
initiator and the targets. If there are three or more boards in the setup, then the clock and sync signal must go
directly from the initiator’s output to a Clock Driver board, as illustrated in Figure 2. If there are only two boards in
the setup, then a Clock Driver board is not needed, as illustrated in Figure 3.

Setting Initiator Target(s)
Initiator Mode Initiator Target
Clock Source External FGEN | External FGEN
External Clock Output Source | Rate Generator | N/A (External FGEN)
SYNC Source External External

51

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

Clock
> Driver

 Clock |

Sync

—— e

| Initiator
—>
Clock
f_’
1l | Targetl
Sync "
f»
I Target 2
L
B .
_:L’i Target X :
_‘>I |

\ 4

Clock >

Sync

Initiator

Clock

Sync

Target

Figure 2 The star configuration with three or more boards requires a Clock Driver board.

Figure 3 The star configuration with only two boards does not require a Clock Driver board.

8.4.2. Daisy Chain Configuration

The daisy chain configuration generally permits the most flexible placement of boards and wiring, and does not
require a Clock Driver board. This is accomplished by configuring the boards and the wiring so that the clock and
sync signals go from the initiator to the first target, then sequentially from the first target to the second and so on.
This setup is applicable for any number of boards, as illustrated in Figure 4. The table below shows the board

programming that is specific to the daisy chain configuration.

Setting

Initiator

Target(s)

Initiator Mode

Initiator

Target

Clock Source

Internal FGEN

External FGEN

External Clock Output Source

Internal FGEN

N/A (External FGEN)

SYNC Source Internal External
Clock Clock | Clock j=========- !
Initiator Target 1 Target 2 \ Target X !
Sync Sync | Sync TL__________ [

Figure 4 In this configuration the clock and sync signals are daisy chained from one board to the next.

52

General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

9. Sample Applications

The driver archive includes a variety of sample and test applications. While they are provided without support and
without any external documentation, any problems reported will be addressed as time permits. The applications are
command line based and produce text output for display on a console. All of the applications are built via the
Overall Make Script (section 2.7, page 13), but each may be built individually by changing to its respective directory
and issuing the commands “make clean” and “make”. The initial output from each application includes
information on its supported command line arguments. The following gives a brief overview of each application.
9.1. billion - Billion Byte Read - .../billion/

This application configures the designated board then reads in a billion bytes. The data is discarded after it is read.
9.2. din - Digital Input - .../din/

This application reads the cable’s digital I/O signals and reports the values read to the console.

9.3. dout - Digital Output - .../dout/

This application writes a pattern to the cable’s digital output lines as it is displayed to the console.

9.4. fsamp - Sample Rate - .../fsamp/

This application reports the device configuration required to produce a user specified sample rate.

9.5.id - Identify Board - .../id/

This application reports detailed board identification information. This can be used with tech support to help identify
as much technical information about the board as possible from software.

9.6. irq - Interrupt Test - ...lirq/
This application performs tests of the board interrupts.
9.7. regs - Register Access - ...Iregs/

This application provides menu based interactive access to the board’s registers, and reports other pertinent
information to the console.

9.8. rxrate - Receive Rate - ...Irxrate/

This application configures the board for its highest ADC sample rate then reads the input as fast as possible. The
purpose is to measure the peak sustainable input rate for the host, per the provided command line arguments.

9.9. savedata - Save Acquired Data - .../savedata/

This application configures the board for a modest sample rate, reads a megabyte of data, then saves the data to a
hex file.

53
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

9.10. signals - Digital Signals - .../signals/

This application configures the board to drive the digital output signals for a user specified period of time. This is
done to facilitate setup of test equipment to capture those signals during actual use.

54
General Standards Corporation, Phone: (256) 880-8787

24DSI164C200K, Linux Device Driver, User Manual

Document History

Revision

Description

April 21, 2023

Updated to version 1.5.103.46.1. Updated the description of the Clear Input Buffer IOCTL
service.

March 21, 2023

Updated to version 1.5.103.46.0. Updated the kernel support table.

December 1, 2022

Updated to version 1.4.101.44.0. Updated the kernel support table. Added section on
environment variables. Updated the information for the open and close calls. Minor editorial
modifications.

October 4, 2021

Updated to release version 1.3.94.37.0. Updated the kernel support table. Minor editorial
changes. Added a licensing subsection. Added WAIT_EVENT note. Expanded automatic
startup information.

June 20, 2019

Updated to release version 1.2.86.28.0. Updated the kernel support table. Updated the inside
cover page. Updated Block Mode DMA macro and associated information. Minor editorial
changes. Document reorganization. Added debugging information to the Operating
Information section. Some reformatting.

March 19, 2018

Updated to release version 1.1.76.21.0. Updated the CPU and kernel support section.
Numerous editorial changes.

May 31, 2017

Updated to release version 1.1.71.20.0. Adjusted the lower sample rate limit.

May 30, 2017

Initial release.

55
General Standards Corporation, Phone: (256) 880-8787

